Publications

Export 3 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Woodgate, RA, Aagaard K, Swift JH, Smethie WM, Falkner KK.  2007.  Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties. Journal of Geophysical Research-Oceans. 112   10.1029/2005jc003416   AbstractWebsite

[ 1] Hydrographic and tracer data from 2002 illustrate Atlantic water pathways and variability in the Mendeleev Ridge and Chukchi Borderland (CBLMR) region of the Arctic Ocean. Thermohaline double diffusive intrusions (zigzags) dominate both the Fram Strait (FSBW) and Barents Sea Branch Waters (BSBW) in the region. We show that details of the zigzags' temperature-salinity structure partially describe the water masses forming the intrusions. Furthermore, as confirmed by chemical tracers, the zigzags' peaks contain the least altered water, allowing assessment of the temporal history of the Atlantic waters. Whilst the FSBW shows the 1990s warming and then a slight cooling, the BSBW has continuously cooled and freshened over a similar time period. The newest boundary current waters are found west of the Mendeleev Ridge in 2002. Additionally, we show the zigzag structures can fingerprint various water masses, including the boundary current. Using this, tracer data and the advection of the 1990s warming, we conclude the strongly topographically steered boundary current, order 50 km wide and found between the 1500 m and 2500 m isobaths, crosses the Mendeleev Ridge north of 80 degrees N, loops south around the Chukchi Abyssal Plain and north around the Chukchi Rise, with the 1990s warming having reached the northern ( but not the southern) Northwind Ridge by 2002. Pacific waters influence the Atlantic layers near the shelf and over the Chukchi Rise. The Northwind Abyssal Plain is comparatively stagnant, being ventilated only slowly from the north. There is no evidence of significant boundary current flow through the Chukchi Gap.

Falkner, KK, Steele M, Woodgate RA, Swift JH, Aagaard K, Morison J.  2005.  Dissolved oxygen extrema in the Arctic Ocean halocline from the North Pole to the Lincoln Sea. Deep-Sea Research Part I-Oceanographic Research Papers. 52:1138-1154.   10.1016/j.dsr.2005.01.007   AbstractWebsite

Dissolved oxygen (02) profiling by new generation sensors was conducted in the Arctic Ocean via aircraft during May 2003 as part of the North Pole Environmental Observatory (NPEO) and Freshwater Switchyard (SWYD) projects. At stations extending from the North Pole to the shelf off Ellesmere Island, such profiles display what appear to be various 02 maxima (with concentrations 70% of saturation or less) over depths of 70-110 m in the halocline, corresponding to salinity and temperature ranges of 33.3-33.9 and -1.7 to -1.5 degrees C. The features appear to be widely distributed: Similar features based on bottle data were recently reported for a subset of the 1997-1998 SHEBA stations in the southern Canada Basin and in recent Beaufort Sea sensor profiles. Oxygen sensor data from August 2002 Chukchi Borderlands (CBC) and 1994 Arctic Ocean Section (AOS) projects suggest that such features arise from interleaving of shelf-derived, O(2)-depleted waters. This generates apparent oxygen maxima in Arctic Basin profiles that would otherwise trend more smoothly from near-saturation at the surface to lower concentrations at depth. For example, in the Eurasian Basin, relatively low O(2) concentrations are observed at salinities of about 34.2 and 34.7. The less saline variant is identified as part of the lower halocline, a layer originally identified by a Eurasian Basin minimum in "NO," which, in the Canadian Basin, is reinforced by additional inputs. The more saline and thus denser variant appears to arise from transformations of Atlantic source waters over the Barents and/or Kara shelves. Additional low-oxygen waters are generated in the vicinity of the Chukchi Borderlands, from Pacific shelf water outflows that interleave with Eurasian waters that flow over the Lomonosov Ridge into the Makarov Basin and then into the Canada Basin. One such input is associated with the well-known silicate maximum that historically has been associated with a salinity of approximate to 33.1. Above that (32 < S < 33), there is a layer moderately elevated in temperature (summer Bering Sea water) that we show is also O(2)-depleted. We propose that these low O(2) waters influence the NPEO and SWYD profiles to varying extents in a manner reflective of the large-scale circulation. The patterns of halocline circulation we infer from the intrusive features defy a simple boundary-following cyclonic flow. These results demonstrate the value of the improved resolution made feasible with continuous O(2) Profiling. In the drive to better understand variability and change in the Arctic Ocean, deployment of appropriately calibrated CTD-O(2) packages offers the promise of important new insights into circulation and ecosystem function. (c) 2005 Elsevier Ltd. All rights reserved.

Codispoti, LA, Flagg CN, Swift JH.  2009.  Hydrographic conditions during the 2004 SBI process experiments. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:1144-1163.   10.1016/j.dsr2.2008.10.013   AbstractWebsite

Western Arctic Shelf-Basin Interactions (SBI) process experiment cruises were conducted during spring and summer in 2002 and 2004. A comparison of the 2004 data with the results from 2002 reveals several similarities but also some distinct differences. Similarities included the following: (1) Dissolved inorganic nitrogen (DIN) (ammonium+nitrate+nitrite) limited phytoplankton growth in both years, suggesting that the fixed-N transport through Bering Strait is a major control on biological productivity. (2) The head of Barrow Canyon was a region of enhanced biological production. (3) Plume-like nutrient maxima and N** minima (a signal of sedimentary denitrification) extending from the shelf into the interior were common except at our easternmost section where the nearshore end of these features intersected the slope. (4) Particularly during summer, oxygen supersaturations were common in or just above the shallow nitracline. (5) Surface waters at our deepest stations were already depleted in nitrate, ammonium and urea during our springtime observations. A major difference between the 2 years was the greater influence of warm, relatively low-nutrient Alaska Coastal Water (ACW) during 2004 entering the region via Bering Strait. This increased inflow of ACW may have reduced photic zone nutrient concentrations. The differences in water temperature and nutrients were most pronounced in the upper similar to 100 db, and the increased influence of warm water in 2004 relative to 2002 was most evident in our East Barrow (EB) section. Although the EB data were collected on essentially the same year-days (29 July-4 August 2002 vs. 29 July-6 August 2004), the surface layers were up to 5 degrees warmer in 2004. While the stronger inflow of ACW in 2004 may have reduced the autochthonous nutrient supply, rates of primary production, bacterial production, and particulate organic carbon export were higher in 2004. This conundrum might be explained by differences in the availability of light. Although, springtime ice thicknesses were greater in 2004 than in 2002, snow cover was significantly less and may have more than compensated for the modest differences in ice thickness vis a vis light penetration. In addition, there was a rapid and extensive retreat of the ice cover in summer 2004. Increased light penetration in 2004 may have allowed phytoplankton to increase utilization of nutrients in the shallow nitracline. In addition, more light combined with warmer temperatures could enhance that fraction of primary production supported by nutrient recycling. Enhanced subsurface primary production during summer 2004 is suggested not only by the results of incubation experiments but by more extreme dissolved oxygen supersaturations in the vicinity of the nitracline. We cannot, however, ignore aliasing that might arise from somewhat different station distributions and timing. It is also possible that the rapid ice retreat and warmer temperatures lead to an acceleration in the seasonal progression of biological processes such that the summer 2004 SBI Process Cruise (HLY 04-03) experiment was observing a state that might have existed a few weeks after completion of the 2002 summer cruise (HLY 02-03). Despite these complications, there is little doubt that biological conditions at the ensemble of hydrographic stations occupied in 2004 during the SBI Process Cruises differed significantly from those at the stations occupied in 2002. (c) 2008 Published by Elsevier Ltd.