Transports of Nordic Seas water masses and excess SF<sub>6</sub> through Fram Strait to the Arctic Ocean

Citation:
Marnela, M, Rudels B, Olsson KA, Anderson LG, Jeansson E, Torres DJ, Messias MJ, Swift JH, Watson AJ.  2008.  Transports of Nordic Seas water masses and excess SF6 through Fram Strait to the Arctic Ocean. Progress in Oceanography. 78:1-11.

Date Published:

Jul

Keywords:

AIW, Arctic Ocean, atlantic, circulation, east greenland current, fram strait, fresh-water, Geostrophy, halocline, ice, LADCP, nordic seas, north, north-atlantic, released sulfur-hexafluoride, scotland ridge, SF(6), transient tracer, transient tracers, ventilation, water masses

Abstract:

To determine the exchanges between the Nordic Seas and the Arctic Ocean through Fram Strait is one of the most important aspects, and one of the major challenges, in describing the circulation in the Arctic Mediterranean Sea. Especially the northward transport of Arctic Intermediate Water (AIW) from the Nordic Seas into the Arctic Ocean is little known. In the two-ship study of the circulation in the Nordic Seas, Arctic Ocean - 2002, the Swedish icebreaker Oden operated in the ice-covered areas in and north of Fram Strait and in the western margins of Greenland and Iceland seas, while RV Knorr of Woods Hole worked in the ice free part of the Nordic Seas. Here two hydrographic sections obtained by Oden, augmented by tracer and velocity measurements with Lowered Acoustic Doppler Current Profiler (LADCP), are examined. The first section, reaching from the Svalbard shelf across the Yermak Plateau, covers the region north of Svalbard where inflow to the Arctic Ocean takes place. The second, western, section spans the outflow area extending from west of the Yermak Plateau onto the Greenland shelf. Geostrophic and LADCP derived velocities are both used to estimate the exchanges of water masses between the Nordic Seas and the Arctic Ocean. The geostrophic computations indicate a total flow of 3.6 Sv entering the Arctic on the eastern section. The southward flow on the western section is found to be 5.1 Sv. The total inflow to the Arctic Ocean obtained using the LADCP derived velocities is much larger, 13.6 Sv, and the southward transport on the western section is 13.7 Sv, equal to the northward transport north of Svalbard. Sulphur hexafluoricle (SF(6)) originating from a tracer release experiment in the Greenland Sea in 1996 has become a marker for the circulation of AIW. From the geostrophic velocities we obtain 0.5 Sv and from the LADCP derived velocities 2.8 Sv of AIW flowing into the Arctic. The annual transport of SF(6) into the Arctic Ocean derived from geostrophy is 5 kg/year, which is of the same magnitude as the observed total annual transport into the North Atlantic, while the LADCP measurements (19 kg/year) imply that it is substantially larger. Little SF(6) was found on the western section, confirming the dominance of the Arctic Ocean water masses and indicating that the major recirculation in Fram Strait takes place farther to the south. (C) 2008 Elsevier Ltd. All rights reserved.

Notes:

n/a

Website

DOI:

10.1016/j.pocean.2007.06.004