Publications

Export 95 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
V
Granot, R, Tauxe L, Gee JS, Ron H.  2007.  A view into the Cretaceous geomagnetic field from analysis of gabbros and submarine glasses. Earth and Planetary Science Letters. 256:1-11.   10.1016/j.epsl.2006.12.028   AbstractWebsite

The nature of the geomagnetic field during the Cretaceous normal polarity superchron (CNS) has been a matter of debate for several decades. Numerical geodynamo simulations predict higher intensities, but comparable variability, during times of few reversals than times with frequent reversals. Published geomagnetic paleointensity data from the CNS are highly scattered suggesting that additional studies are required. Here we present new paleointensity results from 18 sites collected from the lower oceanic crust of the Troodos ophiolite, Cyprus (92.1 Ma old). Together with recently published data from the Troodos upper crust we obtain three independent palcointensity time-series. These sequences reveal quasi-cyclic variations of intensities about a mean value of 54 +/- 20 Z Am(2), providing insight into the fluctuating nature of the Cretaceous magnetic field. Our data suggest the CNS field was both weaker and more variable than predicted by geodynamo simulations. The large amplitudes of these variations may explain the wide range of dipole moments previously determined from the CNS. (c) 2007 Elsevier B.V. All rights reserved.

Gee, J, Kent DV.  1994.  Variations in Layer 2A Thickness and the Origin of the Central Anomaly Magnetic High. Geophysical Research Letters. 21:297-300.   10.1029/93gl03422   AbstractWebsite

The seismically determined off-axis thickening of the extrusive layer is apparently at odds with the magnetic anomaly high typically associated with the ridge crest. The positive magnetization contrast at the ridge crest is most likely caused by rapid alteration of the extrusive source layer which occurs over spatial scales (2-3 km) comparable to that of the proposed Layer 2A thickening. We present magnetic remanence data from basalts dredged on and near the East Pacific Rise axis at 12-degrees-N which are compatible with a rapid magnetization reduction (approximately 20 k.y. to decay to 1/e). Together with near bottom magnetic profiles from the ultra-fast-spreading East Pacific Rise at 19.5-degrees-S, these data suggest that previous estimates of the time constant of alteration inferred from slow-spreading ridges (0.5 m.y.) may be more than an order of magnitude too high.

T
Kent, DV, Kjarsgaard BA, Gee JS, Muttoni G, Heaman LM.  2015.  Tracking the Late Jurassic apparent (or true) polar shift in U-Pb-dated kimberlites from cratonic North America (Superior Province of Canada). Geochemistry Geophysics Geosystems. 16:983-994.   10.1002/2015gc005734   AbstractWebsite

Different versions of a composite apparent polar wander (APW) path of variably selected global poles assembled and averaged in North American coordinates using plate reconstructions show either a smooth progression or a large (approximate to 30 degrees) gap in mean paleopoles in the Late Jurassic, between about 160 and 145 Ma. In an effort to further examine this issue, we sampled accessible outcrops/subcrops of kimberlites associated with high-precision U-Pb perovskite ages in the Timiskaming area of Ontario, Canada. The 154.91.1 Ma Peddie kimberlite yields a stable normal polarity magnetization that is coaxial within less than 5 degrees of the reverse polarity magnetization of the 157.51.2 Ma Triple B kimberlite. The combined approximate to 156 Ma Triple B and Peddie pole (75.5 degrees N, 189.5 degrees E, A95=2.8 degrees) lies about midway between igneous poles from North America nearest in age (169 Ma Moat volcanics and the 146 Ma Ithaca kimberlites), showing that the polar motion was at a relatively steady yet rapid (approximate to 1.5 degrees/Myr) pace. A similar large rapid polar swing has been recognized in the Middle to Late Jurassic APW path for Adria-Africa and Iran-Eurasia, suggesting a major mass redistribution. One possibility is that slab breakoff and subduction reversal along the western margin of the Americas triggered an episode of true polar wander.

Bowles, JA, Gee JS, Burgess K, Cooper RF.  2011.  Timing of magnetite formation in basaltic glass: Insights from synthetic analogs and relevance for geomagnetic paleointensity analyses. Geochemistry Geophysics Geosystems. 12   10.1029/2010gc003404   AbstractWebsite

Absolute paleointensity estimates from submarine basaltic glass (SBG) typically are of high technical quality and accurately reflect the ambient field when known. SBG contains fine-grained, low-Ti magnetite, in contrast to the high-Ti magnetite in crystalline basalt, which has lead to uncertainty over the origin of the magnetite and its remanence in SBG. Because a thermal remanence is required for accurate paleointensity estimates, the timing and temperature of magnetite formation is crucial. To assess these factors, we generated a suite of synthetic glasses with variable oxygen fugacity, cooling rate, and FeO* content. Magnetic properties varied most strongly with crystallinity; less crystalline specimens are similar to natural SBG and have weaker magnetization, a greater superparamagnetic contribution, and higher unblocking temperatures than more crystalline specimens. Thellier-type paleointensity results recovered the correct field within 1 sigma error with 2 (out of 10) exceptions that likely result from an undetected change in the laboratory field. Unblocking and ordering temperature data demonstrate that low-Ti magnetite is a primary phase, formed when the glass initially quenched. Although prolonged heating at high temperatures (during paleointensity experiments) may result in minor alteration at temperatures <580 degrees C, this does not appear to impact the accuracy of the paleointensity estimate. Young SBG is therefore a suitable material for paleointensity studies.

S
Gee, JS, Cande SC.  2002.  A surface-towed vector magnetometer. Geophysical Research Letters. 29   10.1029/2002gl015245   AbstractWebsite

[1] We have tested the feasibility of using a commercial motion sensor as a vector magnetometer that can be towed at normal survey speeds behind a research vessel. In contrast to previous studies using a shipboard mounted vector magnetometer, the towed system is essentially unaffected by the magnetization of the towing vessel. Results from a test deployment compare favorably with an earlier vector aeromagnetic survey, indicating that the towed instrument can resolve horizontal and vertical anomalies with amplitudes >30-50 nT. This instrument should be particularly useful in equatorial regions, where the vector anomalies are substantially greater than the corresponding total field anomalies.

Yu, YJ, Gee JS.  2005.  Spinel in Martian meteorite SaU 008: implications for Martian magnetism. Earth and Planetary Science Letters. 232:287-294.   10.1016/j.epsl.2004.12.015   AbstractWebsite

Shergotty-Nakhla-Chassigny (SNC) meteorites provide the only available samples of Martian material. The stable permanent magnetization of SNC meteorites has been traditionally attributed to magnetite (Fe3O4) or pyrrhotite (Fe7S8). On the basis of rock magnetic, microscopic, and electron microprobe analyses on rock chips and mineral separates, we suggest that a new material (Fe-Cr-Ti spinel) is responsible for the stable paleomagnetic record of Martian meteorite SaU 008. It is possible that SaU 008 acquired a primary remanence of thermal origin from the Martian crustal field. However, this proposition requires further testing because the effect of shock events on Fe-Cr-Ti spinel is unknown. (c) 2004 Elsevier B.V. All rights reserved.

Bowles, J, Tauxe L, Gee J, McMillan D, Cande S.  2003.  Source of tiny wiggles in Chron C5: A comparison of sedimentary relative intensity and marine magnetic anomalies. Geochemistry Geophysics Geosystems. 4   10.1029/2002gc000489   AbstractWebsite

[1] In addition to the well-established pattern of polarity reversals, short-wavelength fluctuations are often present in both sea-surface data ("tiny wiggles'') and near-bottom anomaly data. While a high degree of correlation between different geographical regions suggests a geomagnetic origin for some of these wiggles, anomaly data alone cannot uniquely determine whether they represent short reversals or paleointensity variations. Independent evidence from another geomagnetic recording medium such as deep-sea sediments is required to determine the true nature of the tiny wiggles. We present such independent evidence in the form of sedimentary relative paleointensity from Chron C5. We make the first comparison between a sedimentary relative paleointensity record (ODP Site 887 at 54degreesN, 148degreesW) and deep-tow marine magnetic anomaly data (43degreesN, 131degreesW) [ Bowers et al., 2001] for Chron C5. The sediment cores are densely sampled at similar to2.5 kyr resolution. The inclination record shows no evidence for reverse intervals within the similar to1 myr-long normal Chron C5n.2n. Rock magnetic measurements suggest that the primary magnetic carrier is pseudo-single domain magnetite. We choose a partial anhysteretic magnetization (pARM) as our preferred normalizer, and the resulting relative paleointensity record is used as input to a forward model of crustal magnetization. We then compare the results of this model with the stacked deep-tow anomaly records. The two records show a significant degree of correlation, suggesting that the tiny wiggles in the marine magnetic anomalies are likely produced by paleointensity variations. An analysis of our sampling density suggests that if any reverse intervals exist at this site, they are likely to be <5 kyr in duration. Furthermore, we suggest that reverse intervals during Chron C5n.2n documented in other locations are unlikely to be global.

Gee, JS, Kent DV.  2007.  Source of oceanic magnetic anomalies and the geomagnetic polarity timesale. Treatise on geophysics. 5( Kono M, Schubert G, Eds.).:455-507., Amsterdam ; Boston: Elsevier Abstract
n/a
Winterer, EL, Gee JS, Van Waasbergen RJ.  1988.  The source area for Lower Cretaceous clastic sediments of the Galicia Margin : geology and tectonic and erosional history. Proceedings of the Ocean Drilling Program, Scientific Results. 103:697-732.   10.2973/odp.proc.sr.103.181.1988   Abstract

Structural relations shown on seismic-reflection profiles of the Galicia margin indicate that during the Early Creta- ceous rifting of the margin, Galicia Bank and its southern extension (Galicia Ridge) were separated from the mainland of Iberia by a fault-controlled trough, and that the rift-stage sandy turbidite sediments in the fault troughs west of Gali- cia Bank were derived from the erosion of a narrow row of rugged hills that occupied the present area of Galicia Bank and Ridge. The volume and age span of rift-stage clastic sediments, estimated from drill and seismic data, imply rapid erosion of about 1 km of bedrock in the source area, suggesting that the source area was uplifted tectonically during the early stage of rifting. The composition of the sandstone indicates a source area dominated by granitic and schistose rocks, consistent with data from dredge hauls. The abundant fragmental plant debris in the sandstone indicates heavily wooded land, and regional sedimentological and paleobotanical data suggest warm rainy climatic conditions. A combi- nation of erosional lowering (largely compensated by isostatic rebound) and tectonic subsidence reduced most of the source area to sea level by the Aptian, and carbonate banks then flourished over the site of the former landmass.

Gee, J, Meurer WP.  2002.  Slow cooling of middle and lower oceanic crust inferred from multicomponent magnetizations of gabbroic rocks from the Mid-Atlantic Ridge south of the Kane fracture zone (MARK) area. Journal of Geophysical Research-Solid Earth. 107   10.1029/2000jb000062   AbstractWebsite

[1] The remanent magnetization of gabbroic material of the Mid-Atlantic Ridge south of the Kane fracture zone (MARK) area provides constraints on both the thermal structure and tectonic history of the lower crust in this slow spreading environment. The remanence of these gabbroic samples is often complex, with the juxtaposition of intervals of apparently normal and reversed polarity rocks over small spatial scales (tens of centimeters to a few meters). Moreover, several samples when thermally demagnetized have a reversed polarity magnetization component between higher and lower stability normal polarity components. Given the nominal age (similar to1 Ma) of the crust, we suggest that this pattern of normal/reversed-normal polarity most plausibly reflects emplacement and/or cooling through three successive polarity intervals, Jaramillo normal polarity interval (1.07-0.99 Ma), a portion of the Matuyama reversed polarity interval (0.99-0.78 Ma), and the Brunhes normal polarity interval (0.78 Ma to present). A small number of samples with three well-defined magnetization components have magnetic characteristics compatible with a remanence carried by fine-grained, possibly single domain, magnetite. Laboratory unblocking temperatures in these samples therefore allow estimation of lower crustal temperatures at the time of the Jaramillo/Matuyama (0.99 Ma) and Matuyama/ Brunhes (0.78 Ma) polarity transitions. Together with depth estimates derived from fluid inclusion studies these results suggest that middle and lower crustal temperatures remained as high as similar to350degrees-475degreesC for a minimum of 0.21 m. y. after emplacement. We suggest that continued injection of liquid, in the form of sills or small magma bodies, over a broad region (half width of 3 km) is responsible for this slow cooling. In addition, inclinations of the highest stability component from these drill sites are remarkably similar to that expected from an axial geocentric dipole, suggesting that little, if any, resolvable tilt occurred during uplift of these rocks to the seafloor.

Staudigel, H, Gee J, Tauxe L, Varga RJ.  1992.  Shallow Intrusive Directions of Sheeted Dikes in the Troodos Ophiolite - Anisotropy of Magnetic-Susceptibility and Structural Data. Geology. 20:841-844.   10.1130/0091-7613(1992)020<0841:sidosd>2.3.co;2   AbstractWebsite

Sheeted dikes play a central role in the formation of oceanic crust. It is commonly assumed that sheeted dikes intrude vertically upward, from elongated mid-ocean ridge (MOR) magma chambers, but there are no direct observational data bearing on this hypothesis. This assumption contrasts with the intrusive behavior of subaerial volcanoes where magmas rise into shallow central magma chambers that laterally feed vertically oriented dikes. We have studied intrusive directions of sheeted dikes in a structural analogue to oceanic crust, the Troodos ophiolite. Structural and magnetic fabric data of 65 dikes provide consistent results and suggest a broad distribution of shallow (<20-degrees) to nearly vertical, upward magma-transport directions. These data suggest that horizontal emplacement has to be considered for sheeted dikes at MORs, implying more centralized MOR plumbing systems than previously thought. Such plumbing systems provide ample opportunity for complex mixing, fractionation, and contamination of MOR lavas in magma chambers and tabular magma-storage volumes. Whether the MOR magma supply is linear or centralized also has a fundamental effect on crustal accretion processes and the geometry of hydrothermal convection systems.

R
Gee, J, Varga R, Gallet Y, Staudigel H.  1993.  Reversed-polarity overprint in dikes from the Troodos ophiolite: Implications for the timing of alteration and extension. Geology. 21:849-852.: Geological Society of America   10.1130/0091-7613(1993)021<0849:rpoidf>2.3.co;2   AbstractWebsite

Paleomagnetic analysis of dikes from the Troodos ophiolite indicates the presence of a well-defined reversed-polarity overprint, an unexpected result given the currently accepted Cenomanian-Turonian age (88-91 Ma) suggesting formation during the Cretaceous Long Normal Period (83-118 Ma). This reversed- polarity component was apparently acquired prior to tectonic tilting of the dikes, implying that extensional tectonism occurred significantly (>5 m.y.) off axis. Alternatively, the paleomagnetic and field observations may be reconciled if parts of the ophiolite are significantly younger.

Gee, JS, Lawrence RM, Hurst SD.  1996.  Remanence characteristics of gabbros from the MARK area; implications for crustal magnetization. Proceedings of the Ocean Drilling Program, Scientific Results. 153:429-436.   10.2973/odp.proc.sr.153.042.1997   Abstract

Although the general concept of linear magnetic anomalies generated by seafloor spreading processes is well established, the details of the source distribution responsible for these anomalies remain uncertain. We summarize here magnetic properties from variably altered and deformed olivine gabbro, gabbro, and less abundant troctolite, gabbronorite, and oxide gabbros sam- pled at four sites drilled on the western median valley wall of the Mid-Atlantic Ridge south of the Kane Fracture Zone. The overall mean natural remanent magnetization (NRM) intensity (1.54 ± 2.6 A/m) and Koenigsberger ratio (8.05 ± 15.2) for these samples suggest that lower crustal gabbros are a significant contributor to marine magnetic anomalies. However, dual magnetic polarities were recorded at all four sites, with apparent polarity reversals sometimes occurring over spatial scales of tens of cen- timeters. Detailed demagnetization and rock magnetic studies of one such interval suggest that the complex remanence, dual polarities, and the occurrence of spurious well-defined magnetization components are related to production of magnetite during high-temperature alteration and/or cooling in periods of opposite polarity. These complexities, if generally applicable to oce- anic gabbros, may reduce the integrated contribution from the gabbroic layer to marine magnetic anomalies.

Q
Cheadle, MJ, Gee JS.  2017.  Quantitative textural insights into the formation of gabbro in mafic intrusions. Elements. 13:409-414.   10.2138/gselements.13.6.409   AbstractWebsite

Rock textures provide a key to deciphering the physical processes by which gabbro forms in mafic intrusions. Developments in both direct optical and crystallographic methods, as well as indirect magnetic fabric measurements, promise significant advances in understanding gabbroic textures. Here, we illustrate how bulk magnetic fabric data, particularly from intrusions with sparse silicate-hosted magnetite, may be used to extend direct crystallographic observations from thin sections. We also present a scheme for characterizing crystallographic foliation and lineation and use this to suggest that the strength of gabbro plagioclase foliations and lineations varies significantly with geodynamic environment.

Gee, JS, Meurer WP, Selkin PA, Cheadle MJ.  2004.  Quantifying three-dimensional silicate fabrics in cumulates using cumulative distribution functions. Journal of Petrology. 45:1983-2009.   10.1093/petrology/egh045   AbstractWebsite

We present a new method for quantifying three-dimensional silicate fabrics and the associated uncertainties from grain orientation data on three orthogonal sections. Our technique is applied to the orientation of crystallographic features and, hence, yields a fabric related to the lattice-preferred orientation, although the method could be applied to shape-preferred orientations or strain analysis based on passive linear markers. The orientation data for each section are represented by their cumulative distribution function, and an iterative procedure is used to find the symmetric second-rank strain tensor that will simultaneously satisfy the cumulative distribution functions observed on each section. For samples with well-developed fabrics, this technique provides a much closer match to the sectional data than do previous techniques based on eigenparameter analysis of two-dimensional orientation data. Robust uncertainty estimates are derived from a non-parametric bootstrap resampling scheme. The method is applied to two cumulates: one with a well-developed fabric and the other with a weak fabric, from the Stillwater complex, Montana. The silicate petrofabric orientations obtained for these samples compare favorably with independent direct estimates of the volume fabric from electron backscatter diffraction and magnetic techniques.

P
Herbert, TD, Gee J, DiDonna S.  1999.  Precessional cycles in Upper Cretaceous pelagic sediments of the South Atlantic; long-term patterns from high-frequency climate variations. Special Paper Geological Society of America. 332:105-120. Abstract
n/a
Christie, DM, Dieu JJ, Gee J.  1995.  Petrologic studies of basement lavas from Northwest Pacific guyots. Proceedings of the Ocean Drilling Program, Scientific Results. 144:495-512.   10.2973/odp.proc.sr.144.028.1995   Abstract

Leg 144 of the Ocean Drilling Program (ODP) recovered lavas and volcaniclastics from the volcanic basement of five northwest Pacific guyots (Limalok, Lo-En, and Wodejebato guyots in the Marshall Islands group; MIT Guyot, an isolated edifice midway between the Marshall Islands and Japan; and Takuyo-Daisan Guyot in the Japanese seamount group). Most of the lavas have undergone extensive low-temperature alteration, but their petrography, mineral chemistry, and, in some cases, whole-rock chemistry clearly demonstrate that almost all are of alkalic affinity, ranging from highly magnesian basanites to hawaiites. The sole exception is the single lava recovered from Takuyo-Daisan, which is tholeiitic or transitional in character.Tectonic reconstructions suggest that all the seamounts investigated during Leg 144 originated, in Cretaceous time, as intraplate volcanoes in what is now known as the SOPITA (South Pacific isotopic and thermal anomaly) region. One of the principal objectives of basement sampling was to determine whether the present-day manifestations of this region have persisted since the Cretaceous or whether they have evolved through time. Ratios and relative abundance patterns of those incompatible trace elements that are not readily affected by alteration processes are remarkably uniform in the Leg 144 alkalic lavas, falling well within the overall field of modern SOPITA lavas and strongly resembling those of Tahiti in particular. In this uniformity, they differ from the pronounced diversity of modern SOPITA lavas, although the sample is rather small. Thus, the Cretaceous SOPITA mantle source was little different in trace element abundances from today, although the Leg 144 data do not preclude an increase in diversity through time.

Nakanishi, M, Gee JS.  1995.  Paleomagnetic investigations of Leg 144 volcanic rocks: paleolatitudes of the northwestern Pacific guyots. Proceedings of the Ocean Drilling Program Scientific Results. 144:585-604.   10.2973/odp.proc.sr.144.022.1995   Abstract

Paleomagnetic properties of 340 minicore samples from 5 guyots in the northwestern Pacific Ocean were measured on board the JOIDES Resolution and in the paleomagnetic laboratories of the Ocean Research Institute, University of Tokyo, and of Lamont-Doherty Earth Observatory. Stepwise thermal and alternating-field (AF) demagnetizations typically isolate the same characteristic magnetization direction. The shipboard and shore-based paleomagnetic measurements suggest a paleolatitude of ~10°S for Limalok, Wodejebato, MIT, and Takuyo-Daisan guyots. Lo-En Guyot apparently was constructed at a latitude of 31°S. According to the radiometric age of volcanic rocks from MIT Guyot, the reversed polarity of the volcanic basement of MIT Guyot corresponds to Chron M1 or older. A reversed polarity remanence of Wodejebato Guyot was acquired during Chron C33R because radiometric age determinations for Wodejebato Guyot range from 79 to 85 Ma. Our paleolatitude estimates for Lo-En, MIT, and Takuyo-Daisan guyots differ from those derived from previous seamount magnetic anomaly modeling. The sense and magnitudeof this paleolatitude discrepancy are consistent with a significant contribution from viscous and induced magnetizations. We estimated the paleolatitudes of the guyots from the age data and from a previously published absolute-motion model for the Pacific Plate. Differences between these paleolatitude estimates and those derived from paleomagnetic measurements except for Wodejebato Guyot are smaller than 6°.

Garces, M, Gee JS.  2007.  Paleomagnetic evidence of large footwall rotations associated with low-angle faults at the Mid-Atlantic Ridge. Geology. 35:279-282.   10.1130/g23165a.1   AbstractWebsite

Exposures of gabbros and mantle-derived peridotites; at slow-spreading oceanic ridges have been attributed to extension on long-lived, low-angle detachment faults, similar to those described in continental metamorphic core complexes. In continental settings, such detachments have been interpreted as having originated and remained active at shallow dips. Alternatively, currently shallow dipping fault surfaces may have originated at moderate to steep dips and been flattened by subsequent flexure and isostatic uplift. While the latter interpretation would be more consistent with Andersonian faulting theory, it predicts large footwall tilts that have not been observed in continental detachment faults. Here we use the magnetization of oceanic gabbro and peridotite samples exposed near the Fifteen-Twenty Fracture Zone on the Mid-Atlantic Ridge to demonstrate that substantial footwall rotations have occurred. Widespread rotations ranging from 50 degrees to 80 degrees indicate that original fault orientations dipped steeply toward the spreading axis.

Horst, AJ, Varga RJ, Gee JS, Karson JA.  2011.  Paleomagnetic constraints on deformation of superfast-spread oceanic crust exposed at Pito Deep Rift. Journal of Geophysical Research-Solid Earth. 116   10.1029/2011jb008268   AbstractWebsite

The uppermost oceanic crust produced at the superfast spreading (similar to 142 km Ma(-1), full-spreading rate) southern East Pacific Rise (EPR) during the Gauss Chron is exposed in a tectonic window along the northeastern wall of the Pito Deep Rift. Paleomagnetic analysis of fully oriented dike (62) and gabbro (5) samples from two adjacent study areas yield bootstrapped mean remanence directions of 38.9 degrees +/- 8.1 degrees, -16.7 degrees +/- 15.6 degrees, n = 23 (Area A) and 30.4 degrees +/- 8.0 degrees, -25.1 degrees +/- 12.9 degrees, n = 44 (Area B), both are significantly distinct from the Geocentric Axial Dipole expected direction at 23 degrees S. Regional tectonics and outcrop-scale structural data combined with bootstrapped remanence directions constrain models that involve a sequence of three rotations that result in dikes restored to subvertical orientations related to (1) inward-tilting of crustal blocks during spreading (Area A = 11 degrees, Area B = 22 degrees), (2) clockwise, vertical-axis rotation of the Easter Microplate (A = 46 degrees, B = 44 degrees), and (3) block tilting at Pito Deep Rift (A = 21 degrees, B = 10 degrees). These data support a structural model for accretion at the southern EPR in which outcrop-scale faulting and block rotation accommodates spreading-related subaxial subsidence that is generally less than that observed in crust generated at a fast spreading rate exposed at Hess Deep Rift. These data also support previous estimates for the clockwise rotation of crust adjacent to the Easter Microplate. Dike sample natural remanent magnetization (NRM) has an arithmetic mean of 5.96 A/m +/- 3.76, which suggests that they significantly contribute to observed magnetic anomalies from fast- to superfast-spread crust.

Varga, RJ, Karson JA, Gee JS.  2004.  Paleomagnetic constraints on deformation models for uppermost oceanic crust exposed at the Hess Deep Rift: Implications for axial processes at the East Pacific Rise. Journal of Geophysical Research-Solid Earth. 109   10.1029/2003jb002486   AbstractWebsite

Studies of oceanic crust exposed in tectonic windows and in ophiolites have revealed the importance of normal faulting and attendant tilting of upper crustal rock units in the accretion process at oceanic spreading centers. We present paleomagnetic remanence data from 45 fully oriented samples from dikes, gabbros and a small number of basaltic lavas from fast spread crust exposed along the Hess Deep Rift. Over similar to25 km along this escarpment, dikes and dike-subparallel fault zones dip consistently away from the East Pacific Rise (EPR) while lava flows dip toward the ridge. Underlying gabbro is less deformed but contains widely spaced, low-angle fractures, tentatively interpreted as shear zones. As expected from the crustal age (similar to1.07-1.48 Ma), most remanence data indicate reversed polarity magnetization and are compatible with the expected range of secular variation at the site. Overly steep and directionally scattered gabbro remanence and observed low-angle shear structures within this unit are tentatively interpreted as the manifestation of three-dimensional strain along anastomosing shear zones. Although some remanence directions are incompatible with any plausible deformation history, and thus likely reflect orientation errors, the overall data set is consistent with a model involving sequential rotations on (1) outward dipping, EPR-parallel (similar toN-S) normal faults and (2) Hess Deep Rift-parallel (similar toE-W) normal faults Average rotations for these sequential events are 22degrees to the east (defined by the mean dike attitude) and 10degrees to the south (estimated by bathymetry), respectively. This model best explains the remanence data, observed dikes and lava orientations, presence of dike-parallel fault zones, and the observation of steep, little deformed dikes cutting both east dipping dikes and faults. The data support a structural model for spreading at the EPR in which outcrop-scale faulting and rotation is linked to subaxial subsidence and to consequent development of dominantly outward facing normal faults close to the spreading axis. Because these faults form within the neovolcanic zone, they are subject to burial and are expected to have subdued to little surface expression.

Gallet, Y, Gee J, Tauxe L, Tarduno JA.  1993.  Paleomagnetic analyses of short normal polarity magnetic anomalies in the Matuyama Chron. Proceedings of the Ocean Drilling Program, Scientific Results. 130:547-559.   10.2973/odp.proc.sr.130.033.1993   Abstract

We document three short normal intervals in the natural remanent magnetization of sediments within the Matuyama Chron. These three anomalous zones of magnetization between the Jaramillo and Olduvai subchrons were identified from continuous measurements of archive halves from Hole 803 A using the pass-through 2G cryogenic magnetometer at Scripps. The U-channel samples were taken from the three intervals, analyzed using the pass-through system, and then cut into discrete 1 -cm-thick samples. Measurements on discrete samples confirmed the presence of the upper normal polarity zone. Based on sedimentation rate calculations, this zone is confidently correlated with the Cobb Mountain Subchron. For the two other anomalous zones, complete thermal demagnetization revealed a high-stability component (250°-575°C) of reversed polarity. The intensity of the low-stability normal polarity component, normalized by susceptibility, remains roughly constant throughout the entire interval sampled, whereas the intensity of the high-stability reversed component is much lower within the normal zone than outside. We interpret these two normal zones, then, as periods of low (reversed polarity) geomagnetic field intensity resulting in low magnetization of the sediments; the periods of these low magnetization reversed polarity zones are completely masked by the component acquired viscously in a normal polarity field.

Tauxe, L, Gee JS, Steiner MB, Staudigel H.  2013.  Paleointensity results from the Jurassic: New constraints from submarine basaltic glasses of ODP Site 801C. Geochemistry, Geophysics, Geosystems.   10.1002/2013GC004704   AbstractWebsite

Tholeiite of the oldest oceanic crust was drilled during ODP Legs 129 and 185 at Hole 801C in the western Pacific. Fresh appearing submarine basaltic glass (SBG) was recovered from the tholetiites (~167 Ma; Koppers et al. [2003]) which has been shown to be nearly ideal for determining absolute paleointensity. Paleointensities of the younger, off-axis, alkalic basalts (~160 Ma; Koppers et al. [2003]), overlying the tholeiites, had been studied earlier [Tauxe, 2006]. Here we report results from the older tholeiitic (on-axis) sequence. We subjected a total of 73 specimens from 17 cooling units to absolute paleointensity experiments. Of these, 30 specimens and 6 cooling unit averages met our strictest reliability criteria, yielding an average of 11.9± 3.9 μT. The bulk of evidence suggests a paleolatitude of the site of 14°S (with an uncertainty of 10°). This translates the intensity to a value for the virtual axial dipole moment of 28 ZAm2, slightly lower than values determined from the plagio clase crystals in the three cooling units of the younger alkalic basalts over lying the tholeiites. This value is low when compared to the long-term median value of the field of 42 ZAm2. Our results and those of the published literature therefore support the contention of a low magnetic field strength in the Jurassic (average of 28 ± 14 ZAm2; N = 138 individual estimates), as initially suggested by Prévot et al. [1990]. Our interpretation of the body of available data argue for low field strengths for the entire Jurassic extending into the early Cretaceous.

Selkin, PA, Gee JS, Meurer WP, Hemming SR.  2008.  Paleointensity record from the 2.7 Ga Stillwater Complex, Montana. Geochemistry Geophysics Geosystems. 9   10.1029/2008gc001950   AbstractWebsite

The record of geomagnetic intensity captured in the 2.7 Ga Stillwater Complex (Montana, USA) provides a statistical description of the Archean geodynamo. We present results of modified Thellier paleointensity experiments on 441 core specimens, 114 of which pass strict reliability criteria. The specimens are from 53 sites spanning most of the Banded Series rocks in the Stillwater Complex. On the basis of thermochronologic and petrologic evidence, we interpret the highest temperature component of remanence to be a late Archean thermoremanence, though the possibility remains that it is a thermochemical remanence. Thermal models indicate that the highest temperature magnetization component at each of the sites averages similar to 20-200 ka of geomagnetic secular variation. The suite of sites as distributed through the Banded Series samples a roughly a 1 Ma time interval. The average of the most reliable paleointensity measurements, uncorrected for the effects of anisotropy or cooling rate, is 38.2 +/- 11.3 mu T (1 sigma). Remanence anisotropy, cooling rate, and the nonlinear relationship between applied field and thermoremanence have a significant effect on paleointensity results; a corrected average of 30.6 +/- 8.8 mu T is likely a more appropriate value. Earth's average dipole moment during the late Archean (5.05 +/- 1.46 x 10(22) Am(2), lambda(pmag) = 44.5 degrees) was well within the range of estimates from Phanerozoic rocks. The distribution of site-mean paleointensities around the mean is consistent with that expected from slow cooling over timescales expected from thermal models and with secular variation comparable to that of the Phanerozoic field.

Avery, MS, Gee JS, Bowles JA, Jackson MJ.  2018.  Paleointensity estimates from ignimbrites: The Bishop Tuff Revisited. Geochemistry Geophysics Geosystems. 19:3811-3831.   10.1029/2018gc007665   AbstractWebsite

Volcanic ash flow tuffs (ignimbrites) may contain single domain-sized (titano) magnetite that should be good for recording geomagnetic field intensity, but due to their complex thermal histories also contain other magnetic grains, which can complicate and obscure paleointensity determination. An initial study of the suitability of the similar to 767ka Bishop Tuff for measuring paleointensity found an internally consistent estimate of 43.03.2T. This initial study also showed a spatial heterogeneity in reliable paleointensity estimates that is possibly associated with vapor-phase alteration and fumarolic activity, which motivated resampling of the Bishop Tuff to examine spatial changes in magnetic properties. Three new stratigraphic sections of the Bishop Tuff within the Owens River gorge were sampled, and the paleointensity results from the initial study in the same locality were reinterpreted. The mean of all sites is 41.911.8T; this agrees with the initial study's finding but with substantially greater scatter. Two sections show evidence of vapor-phase alteration where the presence of titanohematite, likely carrying a thermochemical remanence, produces nonideal behavior. This thermochemical remanence in the upper portion of the section also produces some paleointensity estimates of technically high quality that have significantly higher intensity than the rest of the tuff. Our best estimate for paleointensity, 39.69.9T, comes from the densely welded ignimbrite that was emplaced above the Curie temperature of magnetite. The low permeability of this unit likely shielded it from vapor-phase alteration. Our results suggest that care must be taken in interpreting paleointensity data from large tuffs as nonthermal remanence may be present. Understanding past variations of Earth's magnetic field help us understand processes in Earth's core and help us to better understand current field behavior, which is important to life on Earth. Earth's field is recorded by magnetic-minerals in rocks as they form. Variations in the strength of the magnetic field (paleointensity) are less well known than large variations in direction. This is partially due to the difficulty in identifying rocks that are suitable for paleointensity experiments. Rocks made of volcanic ash (ignimbrites) have been shown to successfully record the field strength during recent volcanic eruptions. However, we show evidence that ignimbrites may not all be suitable for paleointensity studies. The Bishop Tuff, located in eastern California, erupted about 767 thousand years ago, emplacing a large volume (similar to 200km(3), i.e., about 80 million Olympic swimming pools or slightly bigger than Lake Tahoe) of ash and lava over a few days. With samples from the Bishop Tuff we test variations in magnetic-mineralogy that may be related to venting volcanic gas, interaction with water, eruption temperatures, or the degree to which the ash compacted and solidified into rock. These factors affect the magnetic-minerals' ability to record paleointensity and the success rate of our experiments.