Export 7 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
Tarduno, JA, Gee J.  1995.  Large-Scale Motion Between Pacific and Atlantic Hotspots. Nature. 378:477-480.   10.1038/378477a0   AbstractWebsite

STUDIES of true polar wander (TPW), the rotation of the solid Earth with respect to the spin axis(1), have suggested that there has been 10-15 degrees of relative motion over the past 130 Myr (refs 2-4). In such studies, the orientation of the spin axis is recovered from continental palaeomagnetic poles (corrected for relative plate motions), and compared with a deep-mantle reference frame defined by hotspot locations. But deducing relative plate motions becomes increasingly difficult for older (Mesozoic) time periods, hindering tests of TPW on timescales comparable to those of large-scale mantle convection; moreover, the assumption of hotspot fixity is controversial(5,6). We examine here a more direct approach(7,8), using palaeolatitudes derived from Pacific guyots. Contrary to predictions from TPW models, these data suggest only minor latitudinal shifts of Pacific hotspots during the Cretaceous period. Instead of TPW, relative motion between the Atlantic and Pacific hotspot groups(9) is required at a velocity of approximately 30 mm yr(-1), more than 50% larger than previously proposed(5).

Koppers, AAP, Yamazaki T, Geldmacher J, Gee JS, Pressling N, Hoshi H, Anderson L, Beier C, Buchs DM, Chen LH, Cohen BE, Deschamps F, Dorais MJ, Ebuna D, Ehmann S, Fitton JG, Fulton PM, Ganbat E, Hamelin C, Hanyu T, Kalnins L, Kell J, Machida S, Mahoney JJ, Moriya K, Nichols ARL, Rausch S, Sano SI, Sylvan JB, Williams R.  2012.  Limited latitudinal mantle plume motion for the Louisville hotspot. Nature Geoscience. 5:911-917.   10.1038/ngeo1638   AbstractWebsite

Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave narrow trails of volcanic seamounts as a tectonic plate moves over their location. These seamount trails are excellent recorders of Earth's deep processes and allow us to untangle ancient mantle plume motions. During ascent it is likely that mantle plumes are pushed away from their vertical upwelling trajectories by mantle convection forces. It has been proposed that a large-scale lateral displacement, termed the mantle wind, existed in the Pacific between about 80 and 50 million years ago, and shifted the Hawaiian mantle plume southwards by about 15 degrees of latitude. Here we use Ar-40/Ar-39 age dating and palaeomagnetic inclination data from four seamounts associated with the Louisville hotspot in the South Pacific Ocean to show that this hotspot has been relatively stable in terms of its location. Specifically, the Louisville hotspot-the southern hemisphere counterpart of Hawai'i-has remained within 3-5 degrees of its present-day latitude of about 51 degrees S between 70 and 50 million years ago. Although we cannot exclude a more significant southward motion before that time, we suggest that the Louisville and Hawaiian hotspots are moving independently, and not as part of a large-scale mantle wind in the Pacific.

Yu, YJ, Tauxe L, Gee JS.  2007.  A linear field dependence of thermoremanence in low magnetic fields. Physics of the Earth and Planetary Interiors. 162:244-248.   10.1016/j.pepi.2007.04.008   AbstractWebsite

We tested a linear field-dependence of thermoremanent magnetization (TRM) to saturation isothermal remanent magnetization (SIRM) ratio for magnetite-containing natural samples. The TRM/SIRM shows a linear field-dependence to very low field ranges (<1 mu T). This observation is at odds with a claim of limited sensitivity at low fields in TRM acquisition documented in previous studies. We attribute the difference to poor field control in the ovens used in previous studies. The TRM/SIRM ratio shows a grain-size dependence. For magnetite-containing samples with insignificant anisotropy, the TRM/SIRM is most efficient in pseudo-single-domain magnetites. These results suggest that while the TRM/SIRM ratio is linear at low field strengths, the ratio provides only a crude estimation on the actual paleo-field within two orders of magnitude, suggesting that a careful sample characterization is necessary in applying the TRM/SIRM as a paleointensity proxy. (c) 2007 Elsevier B.V. All rights reserved.

Dick, HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu YL, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm HU, Yoshinobu A.  2000.  A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters. 179:31-51.   10.1016/s0012-821x(00)00102-3   AbstractWebsite

Ocean Drilling Program Leg 176 deepened Hole 735B in gabbroic lower ocean crust by 1 km to 1.5 km. The section has the physical properties of seismic layer 3, and a total magnetization sufficient by itself to account for the overlying lineated sea-sur face magnetic anomaly. The rocks from Hole 735B are principally olivine gabbro, with evidence for two principal and many secondary intrusive events. There are innumerable late small ferrogabbro intrusions, often associated with shear zones that cross-cut the olivine gabbros. The ferrogabbros dramatically increase upward in the section. Whereas there are many small patches of ferrogabbro representing late iron- and titanium-rich melt trapped intragranularly in olivine gabbro, most late melt was redistributed prior to complete solidification by compaction and deformation. This, rather than in situ upward differentiation of a large magma body, produced the principal igneous stratigraphy, The computed bulk composition of the hole is too evolved to mass balance mid-ocean ridge basalt back to a primary magma, and there must be a significant mass of missing primitive cumulates. These could lie either below the hole or out of the section. Possibly the gabbros were emplaced by along-axis intrusion of moderately differentiated melts into the near-transform environment. Alteration occurred in three stages. High-temperature granulite- to amphibolite-facies alteration is most important. coinciding with brittle-ductile deformation beneath the ridge. Minor greenschist-facies alteration occurred under largely static conditions, likely during block uplift at the ridge transform intersection. Late post-uplift low-temperature alteration produced locally abundant smectite, often in previously unaltered areas. The most important features of the high- and low-temperature alteration are their respective associations with ductile and cataclastic deformation, and an overall decrease downhole with hydrothermal alteration generally less than or equal to 5% in the bottom kilometer. Hole 735B provides evidence for a strongly heterogeneous lower ocean crust, and for;he inherent Interplay of deformation. alteration and igneous processes at slow-spreading ridges. It is strikingly different from gabbros sampled from fast-spreading ridges and at most well-described ophiolite complexes. We attribute this to the remarkable diversity of tectonic environments where crustal accretion occurs in the oceans and to the low probability of a section of old slow-spread crust found near a major large-offset transform being emplaced on-land compared to sections of young crust from small ocean basins. (C) 20()() Elsevier Science B.V. All rights reserved.

Vanderkluysen, L, Mahoney JJ, Koppers AAP, Beier C, Regelous M, Gee JS, Lonsdale PF.  2014.  Louisville Seamount Chain: Petrogenetic processes and geochemical evolution of the mantle source. Geochemistry Geophysics Geosystems. 15:2380-2400.   10.1002/2014gc005288   AbstractWebsite

The Louisville Seamount Chain is a similar to 4300 km long chain of submarine volcanoes in the southwestern Pacific that spans an age range comparable to that of the Hawaiian-Emperor chain and is commonly thought to represent a hot spot track. Dredging in 2006 recovered igneous rocks from 33 stations on 22 seamounts covering some 49 Myr of the chain's history. All samples are alkalic, similar to previous dredge and drill samples, providing no evidence for a Hawaiian-type tholeiitic shield-volcano stage. Major and trace element variations appear to be predominantly controlled by small but variable extents of fractional crystallization and by partial melting. Isotopic values define only a narrow range, in agreement with a surprising long-term source homogeneity-relative to the length scale of melting-and overlap with proposed fields for the "C" and "FOZO" mantle end-members. Trace element and isotope geochemistry is uncorrelated with either seamount age or lithospheric thickness at the time of volcanism, except for a small number of lavas from the westernmost Louisville Seamounts built on young (<20 Ma old) oceanic crust. The Louisville hot spot has been postulated to be the source of the similar to 120 Ma Ontong Java Plateau, but the Louisville isotopic signature cannot have evolved from a source with isotopic ratios like those measured for Ontong Java Plateau basalts. On the other hand, this signature can be correlated with that of samples dredged from the Danger Islands Troughs of the Manihiki Plateau, which has been interpreted as a rifted fragment of the "Greater" Ontong Java Plateau.

Gee, JS, Tauxe L, Barge E.  1991.  Lower Jaramillo polarity transition records from the equatorial Atlantic and Indian oceans. Proceedings of the Ocean Drilling Program Scientific Results. 121:377-394.   10.2973/   Abstract

Two records of the geomagnetic polarity transition at the beginning of the Jaramillo Subchron (0.97 Ma) have been obtainedfrom sediments in the equatorial Atlantic (Leg 108, Site 665; 2.95°N, 340.33°E) and Indian (Leg 121, Site 758; 5.38°N, 90.35°E)oceans. Both cores yielded high-quality magnetostratigraphic results; however, the relatively low sedimentation rates, the weakmagnetizations, and complex demagnetization behavior of some transitional samples suggest that the record of the transitional fieldbehavior may be less reliable. In addition, variations in grain size preclude reliable paleointensity determinations although theremanence in both cores is apparently dominated by magnetite. Despite these possible complications, the two cores yield transitionalpaths that are neither far-sided nor near-sided. Together with published records that meet minimum reliability standards, the twoequatorial records presented here suggest that the lower Jaramillo transitional field morphology was significantly nonaxisymmetric.The mean normal and reversed inclinations from both cores deviate from the inclination expected from a geocentric axial dipole, asnoted in virtually all marine sediment cores. The observed inclinations provide further support for a polarity-dependent nondipolecontribution to the time-averaged field.

Lawrence, K, Johnson C, Tauxe L, Gee J.  2008.  Lunar paleointensity measurements: Implications for lunar magnetic evolution. Physics of the Earth and Planetary Interiors. 168:71-87.   10.1016/j.pepi.2008.05.007   AbstractWebsite

We analyze published and new paleointensity data from Apollo samples to reexamine the hypothesis of an early (3.9-3.6 Ga) lunar dynamo. Our new paleointensity experiments on four samples use modern absolute and relative measurement techniques, with ages ranging from 3.3 to 4.3 Ga, bracketing the putative period of an ancient lunar field. Samples 60015 (anorthosite) and 76535 (troctolite) failed during absolute paleointensity experiments. Samples 72215 and 62235 (impact breccias) recorded a complicated, multicomponent magnetic history that includes a low-temperature (< 500 degrees C) component associated with a high intensity (similar to 90 mu T) and a high temperature (> 500 degrees C) component associated with a low intensity (2 [LT). Similar multi-component behavior has been observed in several published absolute intensity experiments on lunar samples. Additional material from 72215 and 62235 was subjected to a relative paleointensity experiment (a saturation isothermal remanent magnetization, or sIRM, experiment); neither sample Provided unambiguous evidence for a thermal origin of the recorded remanent magnetization. We test several magnetization scenarios in an attempt to explain the complex magnetization recorded in lunar samples. Specifically, an overprint from exposure to a small magnetic field (an isothermal remanent magnetization) results in multi-component behavior (similar to absolute paleointensity results) from which we could not recover the correct magnitude of the original thermal remanent magnetization. In light of these new experiments and a thorough re-evaluation of existing paleointensity measurements, we conclude that although some samples with ages of 3.6 to 3.9 Ga are strongly magnetized, and sometimes exhibit stable directional behavior, it has not been demonstrated that these observations indicate a primary thermal remanence. Particularly problematic in the interpretation of lunar sample magnetizations are the effects of shock. As relative paleointensity measurements for lunar samples are calibrated using absolute paleointensities, the lack of acceptable absolute paleointensity measurements renders the interpretation of relative paleointensity measurements unreliable. Consequently, current paleointensity measurements do not support the existence of a 3.9-3.6 Ga lunar dynamo with 100 mu T surface fields, a result that is in better agreement with satellite measurements of crustal magnetism and that presents fewer challenges for thermal evolution and dynamo models. (c) 2008 Elsevier B.V. All rights reserved.