Publications

Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
E
Varga, RJ, Gee JS, Bettison-Varga L, Anderson RS, Johnson CL.  1999.  Early establishment of seafloor hydrothermal systems during structural extension: paleomagnetic evidence from the Troodos ophiolite, Cyprus. Earth and Planetary Science Letters. 171:221-235.   10.1016/s0012-821x(99)00147-8   AbstractWebsite

Paleomagnetic data from the Troodos ophiolite are used to help constrain models for the relationship between extensional normal faulting and hydrothermal alteration related to production of large-tonnage sulfide deposits at oceanic ridges. We have sampled dikes from the Troodos sheeted complex that have been subjected to variable hydrothermal alteration, from greenschist alteration typical of the low water/rock mass ratio interactions outside of hydrothermal upflow zones as well as from severely recrystallized rocks (epidosites) altered within high water/rock mass ratio hydrothermal upflow zones in the root zones beneath large sulfide ore deposits. These dikes are moderately to highly tilted from their initial near-vertical orientations due to rotations in the hangingwalls of approximately dike-parallel, oceanic normal faults. Comparison of characteristic remanence directions from these dikes with the Late Cretaceous Troodos reference direction, therefore, allows a tilt test to determine whether remanent magnetizations were acquired prior to or subsequent to tilting. Remanence directions for both greenschist and epidosite dikes show similar magnitudes of tilting due to rotational normal faulting and restore to the Late Cretaceous Troodos reference direction upon restoration of dikes to near-vertical positions about a NNW-trending, horizontal axis. These data, along with field observations of focused alteration along normal faults, suggest that epidosite alteration occurred during the early stages of extensional tilting and prior to significant rotation. This sequence of events is similar to that observed for creation of large-tonnage sulfide bodies at intermediate to slow spreading centers which form soon after cessation of magmatism and during the early stages of structural extension. We suggest that the dike-parallel normal faults were initiated as extensional fractures during this early stage of crustal extension, thus providing the necessary permeability for focused fluid flow, and that later slip along these structures during rotational-planar normal faulting caused reduction in permeability due to gouge formation. (C) 1999 Elsevier Science B.V. All rights reserved.

Klootwijk, CT, Gee JS, Peirce JW, Smith GM, McFadden PL.  1992.  An Early India-Asia Contact - Paleomagnetic Constraints from Ninetyeast Ridge, ODP Leg 121. Geology. 20:395-398.   10.1130/0091-7613(1992)020<0395:aeiacp>2.3.co;2   AbstractWebsite

New paleomagnetic results from sedimentary rock and basement of the Ninetyeast Ridge (Ocean Drilling Program Leg 121, Sites 756-758) detail the northward movement of the Indian plate for the past 80 m.y. Analysis of the combined paleolatitude-age profile indicates a distinct reduction in India's northward movement rate at 55+ Ma, interpreted as completion of suturing of Greater India and Asia. India's northward motion slowed from 18-19.5 cm/yr to 4.5 cm/yr for the location of Site 758. Comparison of this profile with paleomagnetic data from the wider Himalayan region indicates that initial contact between northwestern Greater India and southern Asia was already established by Cretaceous-Tertiary time. This supports a possible causal link between the India-Asia convergence and the Deccan Traps extrusion.

Selkin, PA, Gee JS, Tauxe L, Meurer WP, Newell AJ.  2000.  The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex. Earth and Planetary Science Letters. 183:403-416.   10.1016/s0012-821x(00)00292-2   AbstractWebsite

Paleomagnetism of Archean rocks potentially provides information about the early development of the Earth and of the geodynamo. Precambrian layered intrusive rocks are good candidates for paleomagnetic studies: such complexes are commonly relatively unaltered and may contain some single-domain magnetite 'armored' by silicate mineral grains. However, layered intrusives often have a strong petrofabric that may result in a strong remanence anisotropy. Magnetic anisotropy can have particularly disastrous consequences for paleointensity experiments if the anisotropy is unrecognized and if its effects remain uncorrected. Here we examine the magnetic anisotropy of an anorthosite sample with a well-developed magmatic foliation. The effect of the sample's remanence fabric on paleointensity determinations is significant: paleointensities estimated by the method of Thellier and Thellier range from 17 to 55 muT for specimens magnetized in a field of 25 muT. We describe a technique based on the remanence anisotropy tensor to correct paleointensity estimates for the effects of magnetic fabric and use it to estimate a paleointensity for the Stillwater Complex (MT, USA) of similar to 32 muT (adjusted for the effects of slow cooling). (C) 2000 Elsevier Science B.V. All rights reserved.

Burgess, K, Cooper RF, Bowles JA, Gee JS, Cherniak DJ.  2010.  Effects of open and closed system oxidation on texture and magnetic response of remelted basaltic glass. Geochemistry Geophysics Geosystems. 11   10.1029/2010gc003248   AbstractWebsite

As part of an experimental and observational study of the magnetic response of submarine basaltic glass (SBG), we have examined, using ion backscattering spectrometry (RBS), transmission and scanning electron microscopy, energy dispersive X-ray spectrometry, and surface X-ray diffraction, the textures wrought by the controlled, open and closed system oxidation of glasses prepared by the controlled environment remelting and quenching of natural SBG. Initial compositions with similar to 9 wt % FeO* were melted at 1430 degrees C with the oxygen fugacity buffered at fayalite-magnetite-quartz; melts were cooled at a rate of 200 degrees C min(-1) near the glass transition (T(g) = 680 degrees C). In open system experiments, where chemical exchange is allowed to occur with the surrounding atmosphere, polished pieces of glass were reheated to temperatures both below and above T(g) for times 1-5000 h; undercooled melts were oxidized at 900 degrees C and 1200 degrees C for 18 and 20 h, respectively. RBS demonstrates unequivocally that the dynamics of open system oxidation involves the outward motion of network-modifying cations. Oxidation results in formation of a Fe-, Ca-, and Mg-enriched surface layer that consists in part of Ti-free nanometer-scale ferrites; a divalentcation- depleted layer is observed at depths >1 mu m. Specimens annealed/oxidized above T(g) have magnetizations elevated by 1-2 orders of magnitude relative to the as-quenched material; this does not appear to be related to the surface oxidation. Quenched glass (closed system, i.e., no chemical exchange between sample and atmosphere) exhibits very fine scale chemical heterogeneities that coarsen with time under an electron beam; this metastable amorphous immiscibility is the potential source for the nucleation of ferrites with a wide range of Ti contents, ferrites not anticipated from an equilibrium analysis of the bulk basalt composition.

Meurer, WP, Gee J.  2002.  Evidence for the protracted construction of slow-spread oceanic crust by small magmatic injections. Earth and Planetary Science Letters. 201:45-55.   10.1016/s0012-821x(02)00660-x   AbstractWebsite

Gabbroic cumulates drilled south of the Kane Transform Fault on the slow-spread Mid-Atlantic Ridge preserve up to three discrete magnetization components. Here we use absolute age constraints derived from the paleomagnetic data to develop a model for the magmatic construction of this section of the lower oceanic crust. By comparing the paleomagnetic data with mineral compositions, and based on thermal models of local reheating, we infer that magmas that began crystallizing in the upper mantle intruded into the lower oceanic crust and formed meter-scale sills. Some of these magmas were crystal-laden and the subsequent expulsion of interstitial liquid from them produced 'cumulus' sills. These small-scale magmatic injections took place over at least 210 000 years and at distances of similar to3 km from the ridge axis and may have formed much of the lower crust. This model explains many of the complexities described in this area and can be used to help understand the general formation of oceanic crust at slow-spread ridges. (C) 2002 Published by Elsevier Science B.V.