Export 8 results:
Sort by: Author [ Title  (Asc)] Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Gee, J, Kent DV.  1999.  Calibration of magnetic granulometric trends in oceanic basalts. Earth and Planetary Science Letters. 170:377-390.   10.1016/s0012-821x(99)00125-9   AbstractWebsite

The validity of magnetic granulometric estimates relies heavily on the ability to distinguish ultrafine particles from coarser grains. For example, populations with dominantly superparamagnetic (SP) or multidomain (MD) grains both are characterized by low remanence and coercivity, and distinguishing these endmembers may provide valuable clues to the origin of magnetization in the intervening stable single domain (SD) size range. The natural grain size variations associated with variable cooling rates in submarine lavas provide a rare opportunity for examining progressive changes in average magnetic grain size, from SP-SD mixtures in submarine basaltic glass to SD-MD mixtures in flow interiors. Based on microanalysis and rock magnetic measurements on pillow basalt samples dredged from the flanks of the Mid-Atlantic Ridge (ages <1 Ma to 70 Ma), a model of preferential dissolution with time of the finest-grained titanomagnetites has recently been suggested as the major process contributing to long-term temporal changes in remanent intensity of mid-ocean ridge basalts. We evaluated the local and long-term temporal trends in effective magnetic grain size predicted by this model using hysteresis data from a large number of submarine basalt samples which span a range of apes from similar to 0 to similar to 122 Ma. Specimens were systematically taken along transects perpendicular to the chilled margin of each sample. The large number of data (similar to 750 loops) and the inferred progressive change in grain size approaching the chilled margin allow recognition of mixing trends between MD and SD grains and between SD and SP grains on a Day-plot. These trends in hysteresis parameters are crucial to resolving the inherent, but frequently overlooked, ambiguity in inferring grain size from hysteresis parameters. We illustrate that two additional rock magnetic tests (warming of a low-temperature isothermal remanence and hysteresis loop shapes) often used to address these ambiguities are inconclusive, requiring some independent knowledge of whether SP or MD grains are likely to be present. Even with a considerably larger data set the substantial intrasample variability in oceanic basalts precludes recognition of any systematic trend in magnetic grain size with age. (C) 1999 Elsevier Science B.V. All rights reserved.

Parker, RL, Gee JS.  2002.  Calibration of the pass-through magnetometer - II. Application. Geophysical Journal International. 150:140-152.   10.1046/j.1365-246X.2002.01692.x   AbstractWebsite

We describe the experimental procedure we use to calibrate a cryogenic pass-through magnetometer. The procedure is designed to characterize the magnetometer sensitivity as a function of position within the sensing region. Then we extend a theory developed in an earlier paper to cover inexact observations and apply it to the data set. The theory allows the calculation of a smooth, harmonic, internally consistent interpolating function for each of the nine components of the response tensor of the magnetometer. With these functions we can calculate the response to a dipole source in any orientation and position, and predict the magnetometer signal from any kind of specimen. The magnetometer in the paleomagnetic laboratory onboard the research vessel Joides Resolution is the subject of one such experiment and we present the results. The variation with position of sensitivity is displayed in a series of plane slices through the magnetometer. We discover from the calibration model that the X and Z coils are misaligned so that the magnetic centre of the coils is displaced from the geometric centre by approximately 0.7 cm. We synthesize the signal expected from the magnetometer when a variety of simple cores are measured. We find that, unless appropriate corrections are made, changes in magnetization direction can appear as variations in magnetic intensity, and conversely, fluctuations in the magnetization strength can produce apparent swings in declination and inclination. The magnitude of these effects is not small and is certainly worth taking into account in the interpretation of records from this kind of instrument. In a pilot study on data from a core measured with the shipboard magnetometer, we observe some large distortions, particularly in declination, that are attributable to uncorrected instrumental effects.

Johnson, PH, Kent DV, Tivey MA, Gee JS, Largon RL, Embley RW.  1997.  Conference on the magnetization of the oceanic crust steers future research. Eos Trans. AGU. 78:199-202.: AGU   10.1029/97eo00133   AbstractWebsite

Because marine magnetic anomalies arise from the combination of seafloor spreading and geomagnetic polarity reversals, they delineate a history of global plate motions and geomagnetic field behavior. Thirty years ago, interpretation of sea surface magnetometer profiles led to the plate tectonics revolution. Recent developments in high resolution magnetic studies are similarly changing our view of the structure and evolution of oceanic crust and beginning to answer basic questions concerning geomagnetic field behavior.In response to these developments, the Conference on the Magnetization of Oceanic Crust was held September 21–24,1996, on Orcas Island in Washington State. Forty-seven scientists representing 20 institutions in seven countries attended the conference, which was funded by the National Science Foundation, the Ridge Interdisciplinary Global Experiment (RIDGE), and the United States Science Advisory Committee (USSAC).

Klootwijk, CT, Gee J, Smith GM, Pierce JW.  1991.  Constraints on the India-Asia convergence; paleomagnetic results from Ninetyeast Ridge. Proceedings of the Ocean Drilling Program, Scientific Results. 121:777-884.   10.2973/   Abstract

This study details the Late Cretaceous and Tertiary northward movement of the Indian plate. Breaks in India's northward movement rate are identified, dated, and correlated with the evolution of the India-Asia convergence. Paleolatitudinal constraints on the origin of Ninetyeast Ridge are discussed, and limited magnetostratigraphic detail is provided.Nearly 1500 sediment and basement samples from Sites 756, 757, and 758 on Ninetyeast Ridge were studied through detailed alternating field and thermal demagnetization. Primary and various secondary magnetization components were identified. Breakpoint intervalsintheprimarypaleolatitudepatternforcommon-Site758wereidentified at2.7,6.7,18.5,about53,63.5-67,and68-74.5 Ma. Only the breakpoint interval at about 53 Ma reliably reflects a reduction in India's northward movement rate. The onset of this probably gradual slowdown was dated at 55 Ma (minimal age) based on the intersection of weighted linear regression lines. At the locationofcommon-Site758,northwardmovementslowedfrom 18-19.5cm/yr(fromatleast65to55Ma)to4.5cm/yr(from55 to at least 20 Ma). Reanalysis of earlier DSDP/ODP paleolatitude data from the Indian plate gives a comparable date (53 Ma) for this reduction in northward velocity.Comparison of our Ninetyeast Ridge data and Himalayan paleomagnetic data indicates that the initial contact of Greater India and Asia mayhave already been established by Cretaceous/Tertiary boundary time. The geological record of the convergence zone and the Indian plate supports the notion that the Deccan Traps extrusion may have resulted from the ensuing deformation of the Indian plate. W e interpret the breakpoint at 55+ Ma to reflect completion of the eastward progressive India-Asia suturing process.Neogene phases in the evolution of the convergence zone were correlated with significant changes in the susceptibility, NRM intensity, and lithostratigraphic profile of Site 758.These changes are interpreted to reflect and postdate tectonic phases in the evolutionofthewiderHimalayanandsouthernTibetanregion.Thechangesweredatedandinterpretedasfollows: 17.5Ma,initial uplift of the Higher Himalaya following initiation of intercontinental underthrusting; 10-10.4 Ma, increased uplift and onset of Middle Siwaliks sedimentation; 8.8 Ma, probable reduction in influx corresponding with the Nagri Formation to Dhok Pathan Formation changeover; 6.5 Ma, major tectonic phase evident throughout the wider Himalayan region and northern Indian Ocean; 5.1-5.4 Ma, onset of oroclinal bending of the Himalayan Arc,of extensional tectonism in southern Tibet, and of Upper Siwalik sedimentation; 2.5-2.7 and 1.9 Ma, major phases of uplift of the Himalayan and Tibetan region culminating in the present-day high relief.The basal ash sequence and upper flow sequence of Site 758 and the basal ash sequence of Site 757 indicate paleolatitudes at about 50°S. These support a Kerguelen hot spot origin for Ninetyeast Ridge. Consistently aberrant inclinations in the basalt sequence ofSite757mayberelatedtoasouthwardridgejumpataboutthetime(58Ma)thatthesebasaltswereerupted.Thebasalt sequence of Site 756 indicates a lower paleolatitude (about 43°S), as do parts of the basalt sequence of Site 758 which also have reversed polarity overprints. The low paleolatitudes for Site 756 may be explained by late-stage volcanism north of the Kerguelen hot spot or the influence of the Amsterdam-St. Paul hot spot.

Gee, J, Staudigel H, Tauxe L.  1989.  Contribution of Induced Magnetization to Magnetization of Seamounts. Nature. 342:170-173.   10.1038/342170a0   AbstractWebsite

A fundamental assumption in modelling seamount magnetic anomalies is that the contribution of induced magnetization is negligible. The general consistency of seamount and non-seamount palaeopoles, scarcity of poles skewed toward the present field direction and the high ratio of remanent to induced magnetization (Koenigsberger ratio) of many oceanic basalts have been cited as evidence supporting this assumption1,2. Recent discussions concerning the dominance of normally magnetized seamounts have focused attention on the possible role of viscous and induced magnetization in seamount anomalies3–6. Here we determine natural remanent magnetization, initial volume susceptibility and the Koenigsberger ratio for more than 2,000 samples from a subaerially exposed seamount section on La Palma, Canary Islands (Table 1). By contrast to results from the oceanic crust and ophiolites, these data indicate that a variety of rock types are potential magnetic sources. The significant induced component of intrusives underscores the importance of the lithological distribution in determining the character of seamount magnetic anomalies. The La Palma data, together with a plausible lithological distribution, indicate that induced magnetization may account for one-sixth of seamount magnetization.

Schoolmeesters, N, Cheadle MJ, John BE, Reiners PW, Gee J, Grimes CB.  2012.  The cooling history and the depth of detachment faulting at the Atlantis Massif oceanic core complex. Geochemistry Geophysics Geosystems. 13   10.1029/2012gc004314   AbstractWebsite

Oceanic core complexes (OCCs) are domal exposures of oceanic crust and mantle interpreted to be denuded to the seafloor by large slip oceanic detachment faults. We combine previously reported U-Pb zircon crystallization ages with (U-Th)/He zircon thermochronometry and multicomponent magnetic remanence data to determine the cooling history of the footwall to the Atlantis Massif OCC (30 degrees N, MAR) and help establish cooling rates, as well as depths of detachment faulting and gabbro emplacement. We present nine new (U-Th)/He zircon ages for samples from IODP Hole U1309D ranging from 40 to 1415 m below seafloor. These data paired with U-Pb zircon ages and magnetic remanence data constrain cooling rates of gabbroic rocks from the upper 800 m of the central dome at Atlantis Massif as 2895 (+1276/-1162) degrees C Myr(-1) (from similar to 780 degrees C to similar to 250 degrees C); the lower 600 m of the borehole cooled more slowly at mean rates of similar to 500 (+125/-102) degrees C Myr(-1) (from similar to 780 degrees C to present-day temperatures). Rocks from the uppermost part of the hole also reveal a brief period of slow cooling at rates of similar to 300 degrees C Myr(-1), possibly due to hydrothermal circulation to similar to 4 km depth through the detachment fault zone. Assuming a fault slip rate of 20 mm/yr (from U-Pb zircon ages of surface samples) and a rolling hinge model for the sub-surface fault geometry, we predict that the 780 degrees C isotherm lies at similar to 7 km below the axial valley floor, likely corresponding both to the depth at which the semi-brittle detachment fault roots and the probable upper limit of significant gabbro emplacement.

Bowles, J, Gee JS, Kent DV, Bergmanis E, Sinton J.  2005.  Cooling rate effects on paleointensity estimates in submarine basaltic glass and implications for dating young flows. Geochemistry Geophysics Geosystems. 6   10.1029/2004gc000900   AbstractWebsite

Cooling rate effects on the intensity of thermoremanent magnetization (TRM) have been well documented in ceramics. In that case, laboratory cooling is generally more rapid than the initial cooling, leading to an overestimate of the paleofield by 5-10% in Thellier-type paleointensity experiments. The reverse scenario, however, has never been tested. We examine the effects of cooling rate on paleointensity estimates from rapidly quenched submarine basaltic glass (SBG) samples from 13 sites at 17 degrees 30'-18 degrees 30'S on the East Pacific Rise. Absolute cooling rates determined by relaxation geospeedometry at five of these sites range from similar to 10 to similar to 330 degrees C min(-1) at the glass transition (similar to 650 degrees C). Over the dominant range of remanence blocking temperatures (similar to 200-400 degrees C), the natural cooling rates are approximately equal to or slightly slower than the laboratory cooling rates during the Thellier experiment. These results suggest that while the cooling rate effect might introduce some within-site scatter, it should not result in a systematic bias in paleointensity from SBG. Paleointensity estimates from the 15 sites range from similar to 29 to 59 mu T, with an average standard error of similar to 1 mu T. Comparison with models of geomagnetic field intensity variations at the site indicate the youngest group of samples is very recent (indistinguishable from present-day) and the oldest is at least 500, and probably several thousand, years old. These age estimates are consistent with available radiometric ages and geologic observations.

Pospichal, JJ, Dehn J, Driscoll N, van Eijden AJM, Farrell J, Fourtanier E, Gamson PD, Gee J, Janecek T, Jenkins GD, Klootwijk CT, Nomura R, Owen RM, Rea DK, Resiwati P, Smit J, Smith GM.  1991.  Cretaceous-Paleogene biomagnetostratigraphy of sites 752-755, Broken Ridge; a synthesis. Proceedings of the Ocean Drilling Program, Scientific Results. 121:721-742.   10.2973/   Abstract

Broken Ridge, in the eastern Indian Ocean, is a shallow-water volcanic platform which formed during the Early to middle Cretaceous at which time it comprised the northern portion of the Kerguelen-Heard Plateau. Rifting during the middle Eocene and subsequent seafloor spreading has moved Broken Ridge about 20°N to its present location. The sedimentary section of Broken Ridge includes Turonian-lower Eocene limestone and chalk with volcanic ash, an interval of detrital sands and gravels associated with middle Eocene rifting and uplift, and a middle-late Oligocene unconformity overlain by a thin section of Neogene-Holocene pelagic calcareous ooze. This paper summarizes the available post-cruise biostratigraphic and magnetostratigraphic data for the Cretaceous- Paleogene section on Broken Ridge. The synthesis of this information permits a more precise interpretation of the timing of events in the history of Broken Ridge, in particular the timing and duration of the middle Eocene rifting event. Paleontologic data support rapid flexural uplift of Broken Ridge in response to mechanical rather than thermal forces. Other highlights of the section include a complete Cretaceous/Tertiary boundary and an opportunity for first-order correlation of Paleogene diatom stratigraphy with that of the calcareous groups.