Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
Selkin, PA, Gee JS, Meurer WP.  2014.  Magnetic anisotropy as a tracer of crystal accumulation and transport, Middle Banded Series, Stillwater Complex, Montana. Tectonophysics. 629:123-137.   10.1016/j.tecto.2014.03.028   AbstractWebsite

Fabric studies of layered mafic intrusions have led to improved understanding of the mechanical processes operating in large magma chambers, including crystal accumulation and crystal mush deformation. Such studies, however, are typically limited by a tradeoff between breadth (number of sites studied, characteristic of field-focused work) and sensitivity (ability to discern subtle fabric elements, characteristic of laboratory fabric analyses). Magnetic anisotropy, if analyzed in a systematic way and supported by single-crystal and petrofabric measurements, permits relatively rapid characterization of magmatic fabrics for large numbers of samples. Here we present the results of a study of remanence and susceptibility anisotropy from three transects through the Middle Banded Series of the Stillwater Complex, Montana. All three transects exhibit a magnetic foliation that increases with stratigraphic height up to the top of Olivine Bearing Zone III, consistent with crystal mush compaction. Perhaps more importantly, each tansect is characterized by a subtle lineation in the anisotropy of magnetic susceptibility with a consistent direction within that transect The magnetic lineation directions, which generally coincide with crystallographic preferred orientations of silicate minerals, likely record a pre-compaction fabric. Lineation directions differ from one transect to another, implying that the process generating the lineation - either slumping of a semiconsolidated crystal mush or magma transport - acted on length scales of at most a few km. These results demonstrate the sensitivity of magnetic anisotropy to petrofabric in mafic rocks. (C) 2014 Elsevier B.V. All rights reserved.

Bowles, JA, Gee JS, Burgess K, Cooper RF.  2011.  Timing of magnetite formation in basaltic glass: Insights from synthetic analogs and relevance for geomagnetic paleointensity analyses. Geochemistry Geophysics Geosystems. 12   10.1029/2010gc003404   AbstractWebsite

Absolute paleointensity estimates from submarine basaltic glass (SBG) typically are of high technical quality and accurately reflect the ambient field when known. SBG contains fine-grained, low-Ti magnetite, in contrast to the high-Ti magnetite in crystalline basalt, which has lead to uncertainty over the origin of the magnetite and its remanence in SBG. Because a thermal remanence is required for accurate paleointensity estimates, the timing and temperature of magnetite formation is crucial. To assess these factors, we generated a suite of synthetic glasses with variable oxygen fugacity, cooling rate, and FeO* content. Magnetic properties varied most strongly with crystallinity; less crystalline specimens are similar to natural SBG and have weaker magnetization, a greater superparamagnetic contribution, and higher unblocking temperatures than more crystalline specimens. Thellier-type paleointensity results recovered the correct field within 1 sigma error with 2 (out of 10) exceptions that likely result from an undetected change in the laboratory field. Unblocking and ordering temperature data demonstrate that low-Ti magnetite is a primary phase, formed when the glass initially quenched. Although prolonged heating at high temperatures (during paleointensity experiments) may result in minor alteration at temperatures <580 degrees C, this does not appear to impact the accuracy of the paleointensity estimate. Young SBG is therefore a suitable material for paleointensity studies.

Lawrence, K, Johnson C, Tauxe L, Gee J.  2008.  Lunar paleointensity measurements: Implications for lunar magnetic evolution. Physics of the Earth and Planetary Interiors. 168:71-87.   10.1016/j.pepi.2008.05.007   AbstractWebsite

We analyze published and new paleointensity data from Apollo samples to reexamine the hypothesis of an early (3.9-3.6 Ga) lunar dynamo. Our new paleointensity experiments on four samples use modern absolute and relative measurement techniques, with ages ranging from 3.3 to 4.3 Ga, bracketing the putative period of an ancient lunar field. Samples 60015 (anorthosite) and 76535 (troctolite) failed during absolute paleointensity experiments. Samples 72215 and 62235 (impact breccias) recorded a complicated, multicomponent magnetic history that includes a low-temperature (< 500 degrees C) component associated with a high intensity (similar to 90 mu T) and a high temperature (> 500 degrees C) component associated with a low intensity (2 [LT). Similar multi-component behavior has been observed in several published absolute intensity experiments on lunar samples. Additional material from 72215 and 62235 was subjected to a relative paleointensity experiment (a saturation isothermal remanent magnetization, or sIRM, experiment); neither sample Provided unambiguous evidence for a thermal origin of the recorded remanent magnetization. We test several magnetization scenarios in an attempt to explain the complex magnetization recorded in lunar samples. Specifically, an overprint from exposure to a small magnetic field (an isothermal remanent magnetization) results in multi-component behavior (similar to absolute paleointensity results) from which we could not recover the correct magnitude of the original thermal remanent magnetization. In light of these new experiments and a thorough re-evaluation of existing paleointensity measurements, we conclude that although some samples with ages of 3.6 to 3.9 Ga are strongly magnetized, and sometimes exhibit stable directional behavior, it has not been demonstrated that these observations indicate a primary thermal remanence. Particularly problematic in the interpretation of lunar sample magnetizations are the effects of shock. As relative paleointensity measurements for lunar samples are calibrated using absolute paleointensities, the lack of acceptable absolute paleointensity measurements renders the interpretation of relative paleointensity measurements unreliable. Consequently, current paleointensity measurements do not support the existence of a 3.9-3.6 Ga lunar dynamo with 100 mu T surface fields, a result that is in better agreement with satellite measurements of crustal magnetism and that presents fewer challenges for thermal evolution and dynamo models. (c) 2008 Elsevier B.V. All rights reserved.

Gee, JS, Meurer WP, Selkin PA, Cheadle MJ.  2004.  Quantifying three-dimensional silicate fabrics in cumulates using cumulative distribution functions. Journal of Petrology. 45:1983-2009.   10.1093/petrology/egh045   AbstractWebsite

We present a new method for quantifying three-dimensional silicate fabrics and the associated uncertainties from grain orientation data on three orthogonal sections. Our technique is applied to the orientation of crystallographic features and, hence, yields a fabric related to the lattice-preferred orientation, although the method could be applied to shape-preferred orientations or strain analysis based on passive linear markers. The orientation data for each section are represented by their cumulative distribution function, and an iterative procedure is used to find the symmetric second-rank strain tensor that will simultaneously satisfy the cumulative distribution functions observed on each section. For samples with well-developed fabrics, this technique provides a much closer match to the sectional data than do previous techniques based on eigenparameter analysis of two-dimensional orientation data. Robust uncertainty estimates are derived from a non-parametric bootstrap resampling scheme. The method is applied to two cumulates: one with a well-developed fabric and the other with a weak fabric, from the Stillwater complex, Montana. The silicate petrofabric orientations obtained for these samples compare favorably with independent direct estimates of the volume fabric from electron backscatter diffraction and magnetic techniques.

Lawrence, RM, Gee JS, Karson JA.  2002.  Magnetic anisotropy of serpentinized peridotites from the MARK area: Implications for the orientation of mesoscopic structures and major fault zones. Journal of Geophysical Research-Solid Earth. 107   10.1029/2000jb000007   AbstractWebsite

[1] Mantle-derived serpentinized peridotites are exposed both along fracture zones and in areas of extreme tectonic extension at slow to intermediate spreading ridges and may constitute a significant volume of the shallow crust in these environments. Here we examine the potential of magnetic remanence data and structural features in serpentinized peridotites from Ocean Drilling Program (ODP) Site 920 (Mid-Atlantic Ridge south of Kane, MARK) to provide insights into the tectonic processes responsible for the exposure of these deep-seated rocks at the seafloor. Paleomagnetic data from 214 samples from Site 920 document a remarkably consistent inclination (36.1degrees +0.8degrees/ -1.4degrees) that is shallower than either the expected geocentric axial dipole inclination (40.7degrees) or present-day inclination (41.9degrees) at the site. We show that the nearly univectorial remanence in these samples is likely to be a partial thermoremanence, possibly augmented by viscous processes at moderate temperatures. These properties were acquired during cooling from the relatively high temperatures (> 350 degreesC) at which serpentinization occurred. The remanence directions therefore provide some information on the latest stages of uplift of the serpentinite massif. However, interpretation of this tectonic history is complicated by the presence of a pronounced magnetic fabric, which presumably resulted in a deflection of the remanence. We estimate the magnitude and direction of this deflection using a relationship between the anisotropy of magnetic susceptibility and remanence anisotropy. The corrected remanent inclinations (mean 39.5degrees) more closely approximates the time-averaged inclination at the site, indicating that the massif experienced little or no resolvable tilt after serpentinization and cooling to 350 degreesC. Accounting for the anisotropy-related deflection of the remanence also allows us to more accurately restore various structural features within the core to their geographic orientation. After this reorientation the dominant mesoscopic foliation in these rocks, defined by the preferred orientation of orthopyroxene and subparallel serpentine veins, has an average orientation that closely parallels the regional-scale fault zones on the western median valley wall.

Selkin, PA, Gee JS, Tauxe L, Meurer WP, Newell AJ.  2000.  The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex. Earth and Planetary Science Letters. 183:403-416.   10.1016/s0012-821x(00)00292-2   AbstractWebsite

Paleomagnetism of Archean rocks potentially provides information about the early development of the Earth and of the geodynamo. Precambrian layered intrusive rocks are good candidates for paleomagnetic studies: such complexes are commonly relatively unaltered and may contain some single-domain magnetite 'armored' by silicate mineral grains. However, layered intrusives often have a strong petrofabric that may result in a strong remanence anisotropy. Magnetic anisotropy can have particularly disastrous consequences for paleointensity experiments if the anisotropy is unrecognized and if its effects remain uncorrected. Here we examine the magnetic anisotropy of an anorthosite sample with a well-developed magmatic foliation. The effect of the sample's remanence fabric on paleointensity determinations is significant: paleointensities estimated by the method of Thellier and Thellier range from 17 to 55 muT for specimens magnetized in a field of 25 muT. We describe a technique based on the remanence anisotropy tensor to correct paleointensity estimates for the effects of magnetic fabric and use it to estimate a paleointensity for the Stillwater Complex (MT, USA) of similar to 32 muT (adjusted for the effects of slow cooling). (C) 2000 Elsevier Science B.V. All rights reserved.

Tauxe, L, Gee JS, Staudigel H.  1998.  Flow directions in dikes from anisotropy of magnetic susceptibility data: The bootstrap way. Journal of Geophysical Research-Solid Earth. 103:17775-17790.   10.1029/98jb01077   AbstractWebsite

One of the first applications of anisotropy of magnetic susceptibility (AMS) was an attempt to determine flow directions from mafic dikes [Khan, 1962]. Since the seminal work of Knight and Walker [1988] defining the expected behavior of AMS in response to magma flow, there has been increasing interest in using AMS for this purpose. Here we present a quantitative method for interpretation of AMS data from dikes, using a parametric bootstrap. First, dikes must be sampled with at least five land preferrably more) samples from within 10 cm of the dike margin. The distributions of the eigenvalues and eigenvectors of the AMS tensor are delineated by calculating eigenparameters of many bootstrapped paradata sets. We generate paradata sets by first selecting a sample at random, then calculating a replacement set of data by drawing tensor elements from normal distributions with the mean and standard deviation of the entire site. The bounds containing 95% of the eigenparameters of the bootstrapped data serve as confidence limits for the parameter of interest. Classification of dikes proceeds as follows: Sites whose maximum and intermediate eigenvalues could not be distinguished are deemed uninterpretable. In addition, sites with principal eigenvectors with angles > 45 degrees away from the dike margin (inverse) or with markedly different directions on either side of the dike (scissored) are excluded. The remaining dikes are classified as having unique flow direction information if the principal eigenvectors from at least one side are distinct from the dike plane based on the distribution of the bootstrapped principal eigenvectors. If neither side has principal eigenvectors distinct from the dike plane, the dikes are classified as having lineation information only. A study comprising 251 dikes from the Troodos ophiolite has 151 sites with directional data, 38 sites with lineations only, 7 inverse sites, 5 scissored sites, and 55 sites not fitting into any other category. The flow directions interpreted from the data were generally southerly, toward a fossil transform zone.

Gee, JS, Lawrence RM, Hurst SD.  1996.  Remanence characteristics of gabbros from the MARK area; implications for crustal magnetization. Proceedings of the Ocean Drilling Program, Scientific Results. 153:429-436.   10.2973/   Abstract

Although the general concept of linear magnetic anomalies generated by seafloor spreading processes is well established, the details of the source distribution responsible for these anomalies remain uncertain. We summarize here magnetic properties from variably altered and deformed olivine gabbro, gabbro, and less abundant troctolite, gabbronorite, and oxide gabbros sam- pled at four sites drilled on the western median valley wall of the Mid-Atlantic Ridge south of the Kane Fracture Zone. The overall mean natural remanent magnetization (NRM) intensity (1.54 ± 2.6 A/m) and Koenigsberger ratio (8.05 ± 15.2) for these samples suggest that lower crustal gabbros are a significant contributor to marine magnetic anomalies. However, dual magnetic polarities were recorded at all four sites, with apparent polarity reversals sometimes occurring over spatial scales of tens of cen- timeters. Detailed demagnetization and rock magnetic studies of one such interval suggest that the complex remanence, dual polarities, and the occurrence of spurious well-defined magnetization components are related to production of magnetite during high-temperature alteration and/or cooling in periods of opposite polarity. These complexities, if generally applicable to oce- anic gabbros, may reduce the integrated contribution from the gabbroic layer to marine magnetic anomalies.

Friedman, R, Gee J, Tauxe L, Downing K, Lindsay E.  1992.  The Magnetostratigraphy of the Chitarwata and Lower Vihowa Formations of the Dera-Ghazi-Khan Area, Pakistan. Sedimentary Geology. 81:253-268.   10.1016/0037-0738(92)90074-2   AbstractWebsite

Three sections of the Chitarwata and lower Vihowa formations were sampled along the Dalana River on the southeastern flank of the Zinda Pir Dome in the southern Sulaiman Range near Dera Ghazi Khan, Pakistan. Together they provide nearly 800 m of a continuous sedimentary record of the Miocene derived from the uplifted Himalayan highlands. Previous studies have examined the Middle and Upper Miocene sediments, the Siwalik Group, of the Potwar Plateau to the north. However, detailed investigations of earlier periods are impossible in that area due to the absence of Oligocene and Lower Miocene sediments caused by continued overthrusting associated with the Himalayan orogeny. Fortunately, the Sulaiman basin to the south, which was further removed from the tectonic activity, provides a record of the Early Miocene in the form of the Chitarwata Formation. The Dalana A, B, and C sections (DGA, DGB, and DGC) were examined and sampled for this study. A magnetostratigraphic analysis was carried out to correlate and date the Chitarwata and Vihowa formations exposed in this area. The samples were subjected to step-wise demagnetization to resolve the primary and secondary remanent magnetization components. Thermal demagnetization trajectories indicate that the majority of samples have sufficient internal consistency that their calculated polarities are reliable. Likewise, the majority of the 126 measured sites showed statistically significant agreement between the three measured samples per site. However, the bimodal data set does not pass the reversal test and so is deemed unsuitable for tectonic interpretations. The individual sections were initially correlated using lithologic and stratigraphic methods, and the relationship was reinforced by the magnetostratigraphy. The composite DG section was tentatively correlated with the standard magnetic polarity time scale placing the disconformable base of the Chitarwata in the DGA section at just older than 22 Ma, the Chitarwata/Vihowa contact at 18.6 Ma, and the top of the Vihowa in the DGC section at about 16 Ma. The assignment of these dates to the Chitarwata will aid in future biostratigraphic and lithostratigraphic correlation of Early Miocene sediments, effectively extending the well-established Siwalik faunal sequence back by four million years.

Klootwijk, CT, Gee J, Smith GM, Pierce JW.  1991.  Constraints on the India-Asia convergence; paleomagnetic results from Ninetyeast Ridge. Proceedings of the Ocean Drilling Program, Scientific Results. 121:777-884.   10.2973/   Abstract

This study details the Late Cretaceous and Tertiary northward movement of the Indian plate. Breaks in India's northward movement rate are identified, dated, and correlated with the evolution of the India-Asia convergence. Paleolatitudinal constraints on the origin of Ninetyeast Ridge are discussed, and limited magnetostratigraphic detail is provided.Nearly 1500 sediment and basement samples from Sites 756, 757, and 758 on Ninetyeast Ridge were studied through detailed alternating field and thermal demagnetization. Primary and various secondary magnetization components were identified. Breakpoint intervalsintheprimarypaleolatitudepatternforcommon-Site758wereidentified at2.7,6.7,18.5,about53,63.5-67,and68-74.5 Ma. Only the breakpoint interval at about 53 Ma reliably reflects a reduction in India's northward movement rate. The onset of this probably gradual slowdown was dated at 55 Ma (minimal age) based on the intersection of weighted linear regression lines. At the locationofcommon-Site758,northwardmovementslowedfrom 18-19.5cm/yr(fromatleast65to55Ma)to4.5cm/yr(from55 to at least 20 Ma). Reanalysis of earlier DSDP/ODP paleolatitude data from the Indian plate gives a comparable date (53 Ma) for this reduction in northward velocity.Comparison of our Ninetyeast Ridge data and Himalayan paleomagnetic data indicates that the initial contact of Greater India and Asia mayhave already been established by Cretaceous/Tertiary boundary time. The geological record of the convergence zone and the Indian plate supports the notion that the Deccan Traps extrusion may have resulted from the ensuing deformation of the Indian plate. W e interpret the breakpoint at 55+ Ma to reflect completion of the eastward progressive India-Asia suturing process.Neogene phases in the evolution of the convergence zone were correlated with significant changes in the susceptibility, NRM intensity, and lithostratigraphic profile of Site 758.These changes are interpreted to reflect and postdate tectonic phases in the evolutionofthewiderHimalayanandsouthernTibetanregion.Thechangesweredatedandinterpretedasfollows: 17.5Ma,initial uplift of the Higher Himalaya following initiation of intercontinental underthrusting; 10-10.4 Ma, increased uplift and onset of Middle Siwaliks sedimentation; 8.8 Ma, probable reduction in influx corresponding with the Nagri Formation to Dhok Pathan Formation changeover; 6.5 Ma, major tectonic phase evident throughout the wider Himalayan region and northern Indian Ocean; 5.1-5.4 Ma, onset of oroclinal bending of the Himalayan Arc,of extensional tectonism in southern Tibet, and of Upper Siwalik sedimentation; 2.5-2.7 and 1.9 Ma, major phases of uplift of the Himalayan and Tibetan region culminating in the present-day high relief.The basal ash sequence and upper flow sequence of Site 758 and the basal ash sequence of Site 757 indicate paleolatitudes at about 50°S. These support a Kerguelen hot spot origin for Ninetyeast Ridge. Consistently aberrant inclinations in the basalt sequence ofSite757mayberelatedtoasouthwardridgejumpataboutthetime(58Ma)thatthesebasaltswereerupted.Thebasalt sequence of Site 756 indicates a lower paleolatitude (about 43°S), as do parts of the basalt sequence of Site 758 which also have reversed polarity overprints. The low paleolatitudes for Site 756 may be explained by late-stage volcanism north of the Kerguelen hot spot or the influence of the Amsterdam-St. Paul hot spot.

Smith, GM, Gee J, Klootwijk CT.  1991.  Magnetic petrology of basalts from Ninetyeast Ridge. Proceedings of the Ocean Drilling Program, Scientific Results. 121:525-545.   10.2973/   Abstract

Given the importance of the inversion of seamount magnetic anomalies, particularly to the motion of the Pacific plate, it is important to gain a better understanding of the nature of the magnetic source of these features. Although different in detail, Ninetyeast Ridge is composed of submarine and subaerial igneous rocks that are similar to those found at many seamounts, making it a suitable proxy. We report here on the magnetic petrology of a collection of samples from Ninetyeast Ridge in the Indian Ocean. Our purpose is to determine the relationship between primary petrology, subsequent alteration, and magnetic properties of the recovered rocks. Such information will eventually lead to a more complete understanding of the magnetization of seamounts and presumably improvements in the accuracy of anomaly inversions. Three basement sites were drilled on Ninetyeast Ridge, with recovery of subaerial basalt flows at the first two (Sites 756 and 757) and submarine massive and pillow flows at the final one (Site 758). The three sites were distinctly different. Site 756 was dominated by ilmenite. What titanomagnetite was present had undergone deuteric alteration and secondary hematite was present in many samples. The magnetization was moderate and stable although it yielded a paleolatitude somewhat lower than expected. Site 757 was highly oxidized, presumably while above sea level. It was dominated by primary titanomagnetite, which was deuterically altered. Secondary hematite was common. Magnetization was relatively weak but quite stable. The paleolatitude for all but the lowermost flows was approximately 40° lower than expected. Site 758 was also dominated by primary titanomagnetite. There was relatively little oxidation with most primary titanomagnetite showing no evidence of high-temperature alteration. No secondary hematite was in evidence. This site had the highest magnetization of the three (although somewhat low relative to other seamounts) but was relatively unstable with significant viscous remanence in many samples. Paleolatitude was close to the expected value. It is not possible, at present, to confidently associate these rocks with specific locations in a seamount structure. A possible and highly speculative model would place rocks similar to Site 757 near the top of the edifice, Site 756 lower down but still erupted above sea level, and Site 758 underlying these units, erupted while the seamount was still below sea level.