Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2005
Bowles, J, Gee JS, Kent DV, Bergmanis E, Sinton J.  2005.  Cooling rate effects on paleointensity estimates in submarine basaltic glass and implications for dating young flows. Geochemistry Geophysics Geosystems. 6   10.1029/2004gc000900   AbstractWebsite

Cooling rate effects on the intensity of thermoremanent magnetization (TRM) have been well documented in ceramics. In that case, laboratory cooling is generally more rapid than the initial cooling, leading to an overestimate of the paleofield by 5-10% in Thellier-type paleointensity experiments. The reverse scenario, however, has never been tested. We examine the effects of cooling rate on paleointensity estimates from rapidly quenched submarine basaltic glass (SBG) samples from 13 sites at 17 degrees 30'-18 degrees 30'S on the East Pacific Rise. Absolute cooling rates determined by relaxation geospeedometry at five of these sites range from similar to 10 to similar to 330 degrees C min(-1) at the glass transition (similar to 650 degrees C). Over the dominant range of remanence blocking temperatures (similar to 200-400 degrees C), the natural cooling rates are approximately equal to or slightly slower than the laboratory cooling rates during the Thellier experiment. These results suggest that while the cooling rate effect might introduce some within-site scatter, it should not result in a systematic bias in paleointensity from SBG. Paleointensity estimates from the 15 sites range from similar to 29 to 59 mu T, with an average standard error of similar to 1 mu T. Comparison with models of geomagnetic field intensity variations at the site indicate the youngest group of samples is very recent (indistinguishable from present-day) and the oldest is at least 500, and probably several thousand, years old. These age estimates are consistent with available radiometric ages and geologic observations.

1999
Varga, RJ, Gee JS, Bettison-Varga L, Anderson RS, Johnson CL.  1999.  Early establishment of seafloor hydrothermal systems during structural extension: paleomagnetic evidence from the Troodos ophiolite, Cyprus. Earth and Planetary Science Letters. 171:221-235.   10.1016/s0012-821x(99)00147-8   AbstractWebsite

Paleomagnetic data from the Troodos ophiolite are used to help constrain models for the relationship between extensional normal faulting and hydrothermal alteration related to production of large-tonnage sulfide deposits at oceanic ridges. We have sampled dikes from the Troodos sheeted complex that have been subjected to variable hydrothermal alteration, from greenschist alteration typical of the low water/rock mass ratio interactions outside of hydrothermal upflow zones as well as from severely recrystallized rocks (epidosites) altered within high water/rock mass ratio hydrothermal upflow zones in the root zones beneath large sulfide ore deposits. These dikes are moderately to highly tilted from their initial near-vertical orientations due to rotations in the hangingwalls of approximately dike-parallel, oceanic normal faults. Comparison of characteristic remanence directions from these dikes with the Late Cretaceous Troodos reference direction, therefore, allows a tilt test to determine whether remanent magnetizations were acquired prior to or subsequent to tilting. Remanence directions for both greenschist and epidosite dikes show similar magnitudes of tilting due to rotational normal faulting and restore to the Late Cretaceous Troodos reference direction upon restoration of dikes to near-vertical positions about a NNW-trending, horizontal axis. These data, along with field observations of focused alteration along normal faults, suggest that epidosite alteration occurred during the early stages of extensional tilting and prior to significant rotation. This sequence of events is similar to that observed for creation of large-tonnage sulfide bodies at intermediate to slow spreading centers which form soon after cessation of magmatism and during the early stages of structural extension. We suggest that the dike-parallel normal faults were initiated as extensional fractures during this early stage of crustal extension, thus providing the necessary permeability for focused fluid flow, and that later slip along these structures during rotational-planar normal faulting caused reduction in permeability due to gouge formation. (C) 1999 Elsevier Science B.V. All rights reserved.

1994
Tauxe, L, Gee J, Gallet Y, Pick T, Bown T.  1994.  Magnetostratigraphy of the Willwood Formation, Bighorn Basin, Wyoming - New Constraints on the Location of Paleocene Eocene Boundary. Earth and Planetary Science Letters. 125:159-172.   10.1016/0012-821x(94)90213-5   AbstractWebsite

The lower Eocene Willwood Formation in the Bighorn Basin of Wyoming preserves a rich and diverse mammalian and floral record. The paleomagnetic behavior of the sequence of floodplain paleosols of varying degrees of maturation ranges from excellent to poor. We present a magnetostratigraphic section for a composite section near Worland, Wyoming, by using a set of strict criteria for interpreting the step-wise alternating field and thermal demagnetization data of 266 samples from 90 sites throughout the composite section. Correlation to the geomagnetic reversal time scale was achieved by combining magnetostratigraphic and biostratigraphic data from this section, from a section in the Clark's Fork Basin in northern Wyoming, and from DSDP Site 550, with the isotopic date determined on a tuff near the top of our section. Our correlation suggests that the Bighorn Basin composite section in the Worland area spans from within Chron C24r to near the top of Chron C24n, or from approximately 55 to 52 Ma. This correlation places the Paleocene/Eocene boundary within the vicinity of the base of the section. Cryptochron C24r.6 of Cande and Kent is tentatively identified some 100 m above the base of the section. The temporal framework provided here enables correlation of the mammalian biostratigraphy of the Bighorn Basin to other continental sequences as well as to marine records. It also provides independent chronological information for the calculation of sediment accumulation rates to constrain soil maturation rates. We exclude an age as young as 53 Ma for the Paleocene/Eocene boundary and support older ages, as recommended in recent time scales. The location of a tuff dated at 52.8 +/- 0.3 Ma at the older boundary C24n.1 is consistent with the, age of 52.5 Ma estimated by Cande and Kent and inconsistent with that of 53.7 Ma, from Harland et al.