Publications

Export 10 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Avery, MS, Gee JS, Constable CG.  2017.  Asymmetry in growth and decay of the geomagnetic dipole revealed in seafloor magnetization. Earth and Planetary Science Letters. 467:79-88.   10.1016/j.epsl.2017.03.020   AbstractWebsite

Geomagnetic intensity fluctuations provide important constraints on time-scales associated with dynamical processes in the outer core. PADM2M is a reconstructed time series of the 0-2 Ma axial dipole moment (ADM). After smoothing to reject high frequency variations PADM2M's average growth rate is larger than its decay rate. The observed asymmetry in rates of change is compatible with longer term diffusive decay of the ADM balanced by advective growth on shorter time scales, and provides a potentially useful diagnostic for evaluating numerical geodynamo simulations. We re-analyze the PADM2M record using improved low-pass filtering to identify asymmetry and quantify its uncertainty via bootstrap methods before applying the new methodology to other kinds of records. Asymmetry in distribution of axial dipole moment derivatives is quantified using the geomagnetic skewness coefficient, sg. A positive value indicates the distribution has a longer positive tail and the average growth rate is greater than the average decay rate. The original asymmetry noted by Ziegler and Constable (2011) is significant and does not depend on the specifics of the analysis. A long-term record of geomagnetic intensity should also be preserved in the thermoremanent magnetization of oceanic crust recovered by inversion of stacked profiles of marine magnetic anomalies. These provide an independent means of verifying the asymmetry seen in PADM2M. We examine three near bottom surveys: a 0 to 780 ka record from the East Pacific Rise at 19 degrees S, a 0 to 5.2 Ma record from the Pacific Antarctic Ridge at 51 degrees S, and a chron C4Ar-C5r (9.3-11.2 Ma) record from the NE Pacific. All three records show an asymmetry similar in sense to PADM2M with geomagnetic skewness coefficients, s(g) > 0. Results from PADM2M and C4Ar-C5r are most robust, reflecting the higher quality of these geomagnetic records. Our results confirm that marine magnetic anomalies can carry a record of the asymmetric geomagnetic field behavior first found for 0-2 Ma in PADM2M, and show that it was also present during the earlier time interval from 9.3-11.2 Ma. (C) 2017 The Authors. Published by Elsevier B.V.

2009
Granot, R, Cande SC, Gee JS.  2009.  The implications of long-lived asymmetry of remanent magnetization across the North Pacific fracture zones. Earth and Planetary Science Letters. 288:551-563.   10.1016/j.epsl.2009.10.017   AbstractWebsite

Large marine magnetic anomalies accompany the Pacific fracture zones (FZs) for thousands of kilometers. Although the origin of these anomalies is poorly understood, their underlying magnetization contrasts should reflect the temporal record of crustal accretion as well as geomagnetic field variations. Here we present an analysis of archival and newly collected magnetic anomaly profiles measured across three FZs from the North Pacific Cretaceous Quiet Zone (120.6 to 83 Ma) that are characterized by a remarkably uniform shape. Forward and inverse modeling indicate that these anomalies arise from remanent magnetization, with enhanced remanence located on one side of each FZ along the entire studied area. A comparison of geochemical and magnetic data from active ridge discontinuities and transform faults suggests that elevated iron content near segment ends is likely responsible for the observed anomalies in the Cretaceous Quiet Zone as well. A more complex magnetization setting is observed where the FZs contain multiple faults. There, the simple model of one-sided enhancements is only partly valid. Comparison between 3D forward modeling of the Quiet Zone magnetization and the calculated magnetization contrasts found across the Pioneer and Pau FZs suggests that the intensity of the geomagnetic field during the Cretaceous superchron had less than 50 percent variability about its average value. No major trends in the strength of the geomagnetic field during the superchron are observed. The presence of long-duration (> 30 m.y.) zones of enhanced magnetization along the young/old sides of the Pioneer/Pau FZs (both left-stepping) requires some long-lived asymmetry in crustal construction processes near ridge-transform intersections. Although the underlying mechanism that controls this long-lived asymmetry remains unclear, absolute plate motions might explain this asymmetry. Shorter period (few m.y.) variations in the amplitudes of the enhancements probably result from oscillations in crustal construction. (C) 2009 Elsevier B.V. All rights reserved.

2008
Lawrence, K, Johnson C, Tauxe L, Gee J.  2008.  Lunar paleointensity measurements: Implications for lunar magnetic evolution. Physics of the Earth and Planetary Interiors. 168:71-87.   10.1016/j.pepi.2008.05.007   AbstractWebsite

We analyze published and new paleointensity data from Apollo samples to reexamine the hypothesis of an early (3.9-3.6 Ga) lunar dynamo. Our new paleointensity experiments on four samples use modern absolute and relative measurement techniques, with ages ranging from 3.3 to 4.3 Ga, bracketing the putative period of an ancient lunar field. Samples 60015 (anorthosite) and 76535 (troctolite) failed during absolute paleointensity experiments. Samples 72215 and 62235 (impact breccias) recorded a complicated, multicomponent magnetic history that includes a low-temperature (< 500 degrees C) component associated with a high intensity (similar to 90 mu T) and a high temperature (> 500 degrees C) component associated with a low intensity (2 [LT). Similar multi-component behavior has been observed in several published absolute intensity experiments on lunar samples. Additional material from 72215 and 62235 was subjected to a relative paleointensity experiment (a saturation isothermal remanent magnetization, or sIRM, experiment); neither sample Provided unambiguous evidence for a thermal origin of the recorded remanent magnetization. We test several magnetization scenarios in an attempt to explain the complex magnetization recorded in lunar samples. Specifically, an overprint from exposure to a small magnetic field (an isothermal remanent magnetization) results in multi-component behavior (similar to absolute paleointensity results) from which we could not recover the correct magnitude of the original thermal remanent magnetization. In light of these new experiments and a thorough re-evaluation of existing paleointensity measurements, we conclude that although some samples with ages of 3.6 to 3.9 Ga are strongly magnetized, and sometimes exhibit stable directional behavior, it has not been demonstrated that these observations indicate a primary thermal remanence. Particularly problematic in the interpretation of lunar sample magnetizations are the effects of shock. As relative paleointensity measurements for lunar samples are calibrated using absolute paleointensities, the lack of acceptable absolute paleointensity measurements renders the interpretation of relative paleointensity measurements unreliable. Consequently, current paleointensity measurements do not support the existence of a 3.9-3.6 Ga lunar dynamo with 100 mu T surface fields, a result that is in better agreement with satellite measurements of crustal magnetism and that presents fewer challenges for thermal evolution and dynamo models. (c) 2008 Elsevier B.V. All rights reserved.

2003
Bowles, J, Tauxe L, Gee J, McMillan D, Cande S.  2003.  Source of tiny wiggles in Chron C5: A comparison of sedimentary relative intensity and marine magnetic anomalies. Geochemistry Geophysics Geosystems. 4   10.1029/2002gc000489   AbstractWebsite

[1] In addition to the well-established pattern of polarity reversals, short-wavelength fluctuations are often present in both sea-surface data ("tiny wiggles'') and near-bottom anomaly data. While a high degree of correlation between different geographical regions suggests a geomagnetic origin for some of these wiggles, anomaly data alone cannot uniquely determine whether they represent short reversals or paleointensity variations. Independent evidence from another geomagnetic recording medium such as deep-sea sediments is required to determine the true nature of the tiny wiggles. We present such independent evidence in the form of sedimentary relative paleointensity from Chron C5. We make the first comparison between a sedimentary relative paleointensity record (ODP Site 887 at 54degreesN, 148degreesW) and deep-tow marine magnetic anomaly data (43degreesN, 131degreesW) [ Bowers et al., 2001] for Chron C5. The sediment cores are densely sampled at similar to2.5 kyr resolution. The inclination record shows no evidence for reverse intervals within the similar to1 myr-long normal Chron C5n.2n. Rock magnetic measurements suggest that the primary magnetic carrier is pseudo-single domain magnetite. We choose a partial anhysteretic magnetization (pARM) as our preferred normalizer, and the resulting relative paleointensity record is used as input to a forward model of crustal magnetization. We then compare the results of this model with the stacked deep-tow anomaly records. The two records show a significant degree of correlation, suggesting that the tiny wiggles in the marine magnetic anomalies are likely produced by paleointensity variations. An analysis of our sampling density suggests that if any reverse intervals exist at this site, they are likely to be <5 kyr in duration. Furthermore, we suggest that reverse intervals during Chron C5n.2n documented in other locations are unlikely to be global.

2002
Gee, JS, Cande SC.  2002.  A surface-towed vector magnetometer. Geophysical Research Letters. 29   10.1029/2002gl015245   AbstractWebsite

[1] We have tested the feasibility of using a commercial motion sensor as a vector magnetometer that can be towed at normal survey speeds behind a research vessel. In contrast to previous studies using a shipboard mounted vector magnetometer, the towed system is essentially unaffected by the magnetization of the towing vessel. Results from a test deployment compare favorably with an earlier vector aeromagnetic survey, indicating that the towed instrument can resolve horizontal and vertical anomalies with amplitudes >30-50 nT. This instrument should be particularly useful in equatorial regions, where the vector anomalies are substantially greater than the corresponding total field anomalies.

2001
Gee, JS, Webb SC, Ridgway J, Staudigel H, Zumberge MA.  2001.  A deep tow magnetic survey of Middle Valley, Juan de Fuca Ridge. Geochemistry Geophysics Geosystems. 2   10.1029/2001GC000170   AbstractWebsite

We report here results from a deep tow magnetic survey over Middle Valley, Juan de Fuca Ridge. A series of track lines are combined to generate a high-resolution map of the magnetic field anomaly within a 10 x 12 km region surrounding the Bent Hill massive sulfide (BHMS) deposit. A uniformly magnetized body (5 A/m) with a cross section approximating the body inferred from Ocean Drilling Program (ODP) drilling can account for the observed near-bottom magnetic anomaly amplitude. Assuming this magnetization is entirely induced, the average susceptibility (0.11 SI) corresponds to similar to3.5% magnetite + pyrrhotite by volume, consistent with the abundance of these phases observed in drill core samples. However, this uniform magnetization model significantly underestimates the magnetic anomaly measured a few meters above the seafloor by submersible, indicating that the upper portion of the sulfide mound must have a significantly higher magnetization (similar to 10% magnetite + pyrrhotite) than at deeper levels. On a larger scale, the near-bottom magnetic anomaly data show that basement magnetizations are not uniformly near zero, as had been inferred from analysis of the sea surface anomaly pattern. We interpret this heterogeneity as reflecting primarily differences in the degree of hydrothermal alteration. Our results highlight the potential of magnetic anomaly data for characterizing hydrothermal deposits where extensive drill core sampling is not available.

1998
Gee, J, Kent DV.  1998.  Magnetic telechemistry and magmatic segmentation on the southern east Pacific rise. Earth and Planetary Science Letters. 164:379-385.   10.1016/s0012-821x(98)00231-3   AbstractWebsite

Results from axial dredges and a profile inversion of magnetic anomaly data along the axis of the East Pacific Rise (EPR) at 13-23 degrees S provide an estimate of the average degree of fractionation for the extrusive layer at this ultrafast-spreading (similar to 145 mm/yr full rate) ridge. We find a high correlation (R = 0.81) between dredge mean FeO* (total iron as FeO) and natural remanence for 34 axial dredges with multiple samples having coincident geochemical and magnetic data. We attribute this good correlation to detailed sampling spanning the full range of cooling-related magnetization changes within a flow and to the young age (0-6 ka) of these axial samples, which effectively minimizes time-dependent magnetization changes due to geomagnetic intensity or alteration. A composite axial magnetic anomaly profile shows large amplitude (up to 400 nT) fluctuations with wavelengths of 50-200 km, which theoretical considerations suggest can reliably be related to the magnetization directly beneath the ship. For much of the southern EPR, seismic data provide independent limits on the axial thickness (259 +/- 55 m) and the pattern of off-axis thickening of the extrusive magnetic source layer. These data also provide evidence for an axial magma lens that effectively eliminates anomaly contributions from deeper magnetic sources. Inversion of the axial magnetic anomaly data utilizing these geophysical constraints yields a magnetization solution which, through use of the regression relating FeO* and natural remanence, may be related to the average degree of differentiation of the extrusive source layer. The magnetic data reveal a pattern of magmatic segmentation that closely parallels the tectonic segmentation of the ridge, suggesting that magma supply may be an important control on the average degree of differentiation of the extrusive layer. (C) 1998 Elsevier Science B.V. All rights reserved.

1997
Gee, J, Kent DV.  1997.  Magnetization of axial lavas from the southern East Pacific Rise (14 degrees-23 degrees S): Geochemical controls on magnetic properties. Journal of Geophysical Research-Solid Earth. 102:24873-24886.   10.1029/97jb02544   AbstractWebsite

Although the spatial association of iron-rich lavas and high-amplitude magnetic anomalies is well documented, a causal link between enhanced iron content and high remanent magnetization has been difficult to establish. Here we report magnetic data from approximately 250 samples, with 8-16% FeO* (total iron as FeO), from the southern East Pacific Rise (EPR) that provide strong support for the presumed geochemical dependence of remanent intensity. The limited age range (0-6 ka) of axial lavas from this ultrafast spreading ridge (similar to 150 mm/yr full rate) effectively minimizes variations resulting from time dependent chan or low-temperature alteration. Systematic sampling relative to the chilled margin illustrates that substantial grain size-related variations in magnetic properties occur on a centimeter scale. Both microprobe data and Curie temperatures suggest that the average groundmass titanomagnetite composition in the southern EPR samples is approximately constant (modal modified ulvospinel content = 0.67) over a wide range of lava compositions. Saturation magnetization and saturation remanence are highly correlated with FeO* (R = 0.73 and 0.83, respectively), indicating that more iron-rich lavas have higher abundances of otherwise similar titanomagnetite. We show that there is a good correlation between natural remanent magnetization (NRM) and FeO*, provided that sufficient specimens are used to determine the average NRM of a sample (R = 0.63). Because the range of iron contents in mid-ocean ridge basalts is limited, the best fit slope (4.44 A/m per %FeO* in an ambient field of 0.030 mT) should provide reasonable bounds on the equatorial magnetization of submarine lavas (similar to 10 A/m at 8.5% FeO* and similar to 50 A/m at similar to 16% FeO*). Finally, we demonstrate that along-axis variations in NRM closely parallel geochemical changes along the southern EPR. Where magnetization values deviate significantly from those predicted from the range of measured FeO* contents, these discrepancies may reflect additional unrecognized geochemical variability.

1991
Klootwijk, CT, Gee J, Smith GM, Pierce JW.  1991.  Constraints on the India-Asia convergence; paleomagnetic results from Ninetyeast Ridge. Proceedings of the Ocean Drilling Program, Scientific Results. 121:777-884.   10.2973/odp.proc.sr.121.121.1991   Abstract

This study details the Late Cretaceous and Tertiary northward movement of the Indian plate. Breaks in India's northward movement rate are identified, dated, and correlated with the evolution of the India-Asia convergence. Paleolatitudinal constraints on the origin of Ninetyeast Ridge are discussed, and limited magnetostratigraphic detail is provided.Nearly 1500 sediment and basement samples from Sites 756, 757, and 758 on Ninetyeast Ridge were studied through detailed alternating field and thermal demagnetization. Primary and various secondary magnetization components were identified. Breakpoint intervalsintheprimarypaleolatitudepatternforcommon-Site758wereidentified at2.7,6.7,18.5,about53,63.5-67,and68-74.5 Ma. Only the breakpoint interval at about 53 Ma reliably reflects a reduction in India's northward movement rate. The onset of this probably gradual slowdown was dated at 55 Ma (minimal age) based on the intersection of weighted linear regression lines. At the locationofcommon-Site758,northwardmovementslowedfrom 18-19.5cm/yr(fromatleast65to55Ma)to4.5cm/yr(from55 to at least 20 Ma). Reanalysis of earlier DSDP/ODP paleolatitude data from the Indian plate gives a comparable date (53 Ma) for this reduction in northward velocity.Comparison of our Ninetyeast Ridge data and Himalayan paleomagnetic data indicates that the initial contact of Greater India and Asia mayhave already been established by Cretaceous/Tertiary boundary time. The geological record of the convergence zone and the Indian plate supports the notion that the Deccan Traps extrusion may have resulted from the ensuing deformation of the Indian plate. W e interpret the breakpoint at 55+ Ma to reflect completion of the eastward progressive India-Asia suturing process.Neogene phases in the evolution of the convergence zone were correlated with significant changes in the susceptibility, NRM intensity, and lithostratigraphic profile of Site 758.These changes are interpreted to reflect and postdate tectonic phases in the evolutionofthewiderHimalayanandsouthernTibetanregion.Thechangesweredatedandinterpretedasfollows: 17.5Ma,initial uplift of the Higher Himalaya following initiation of intercontinental underthrusting; 10-10.4 Ma, increased uplift and onset of Middle Siwaliks sedimentation; 8.8 Ma, probable reduction in influx corresponding with the Nagri Formation to Dhok Pathan Formation changeover; 6.5 Ma, major tectonic phase evident throughout the wider Himalayan region and northern Indian Ocean; 5.1-5.4 Ma, onset of oroclinal bending of the Himalayan Arc,of extensional tectonism in southern Tibet, and of Upper Siwalik sedimentation; 2.5-2.7 and 1.9 Ma, major phases of uplift of the Himalayan and Tibetan region culminating in the present-day high relief.The basal ash sequence and upper flow sequence of Site 758 and the basal ash sequence of Site 757 indicate paleolatitudes at about 50°S. These support a Kerguelen hot spot origin for Ninetyeast Ridge. Consistently aberrant inclinations in the basalt sequence ofSite757mayberelatedtoasouthwardridgejumpataboutthetime(58Ma)thatthesebasaltswereerupted.Thebasalt sequence of Site 756 indicates a lower paleolatitude (about 43°S), as do parts of the basalt sequence of Site 758 which also have reversed polarity overprints. The low paleolatitudes for Site 756 may be explained by late-stage volcanism north of the Kerguelen hot spot or the influence of the Amsterdam-St. Paul hot spot.

Smith, GM, Gee J, Klootwijk CT.  1991.  Magnetic petrology of basalts from Ninetyeast Ridge. Proceedings of the Ocean Drilling Program, Scientific Results. 121:525-545.   10.2973/odp.proc.sr.121.154.1991   Abstract

Given the importance of the inversion of seamount magnetic anomalies, particularly to the motion of the Pacific plate, it is important to gain a better understanding of the nature of the magnetic source of these features. Although different in detail, Ninetyeast Ridge is composed of submarine and subaerial igneous rocks that are similar to those found at many seamounts, making it a suitable proxy. We report here on the magnetic petrology of a collection of samples from Ninetyeast Ridge in the Indian Ocean. Our purpose is to determine the relationship between primary petrology, subsequent alteration, and magnetic properties of the recovered rocks. Such information will eventually lead to a more complete understanding of the magnetization of seamounts and presumably improvements in the accuracy of anomaly inversions. Three basement sites were drilled on Ninetyeast Ridge, with recovery of subaerial basalt flows at the first two (Sites 756 and 757) and submarine massive and pillow flows at the final one (Site 758). The three sites were distinctly different. Site 756 was dominated by ilmenite. What titanomagnetite was present had undergone deuteric alteration and secondary hematite was present in many samples. The magnetization was moderate and stable although it yielded a paleolatitude somewhat lower than expected. Site 757 was highly oxidized, presumably while above sea level. It was dominated by primary titanomagnetite, which was deuterically altered. Secondary hematite was common. Magnetization was relatively weak but quite stable. The paleolatitude for all but the lowermost flows was approximately 40° lower than expected. Site 758 was also dominated by primary titanomagnetite. There was relatively little oxidation with most primary titanomagnetite showing no evidence of high-temperature alteration. No secondary hematite was in evidence. This site had the highest magnetization of the three (although somewhat low relative to other seamounts) but was relatively unstable with significant viscous remanence in many samples. Paleolatitude was close to the expected value. It is not possible, at present, to confidently associate these rocks with specific locations in a seamount structure. A possible and highly speculative model would place rocks similar to Site 757 near the top of the edifice, Site 756 lower down but still erupted above sea level, and Site 758 underlying these units, erupted while the seamount was still below sea level.