Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Bowers, NE, Cande SC, Gee JS, Hildebrand JA, Parker RL.  2001.  Fluctuations of the paleomagnetic field during chron C5 as recorded in near-bottom marine magnetic anomaly data. Journal of Geophysical Research-Solid Earth. 106:26379-26396.   10.1029/2001jb000278   AbstractWebsite

Near-bottom magnetic data contain information on paleomagnetic field fluctuations during chron C5 as observed in both the North and South Pacific. The North Pacific data include 12 survey lines collected with a spatial separation of up to 120 kin, and the South Pacific data consist of a single long line collected on the west flank of the East Pacific Rise (EPR) at 19 degreesS. The North Pacific magnetic profiles reveal a pattern of linear, short-wavelength (2 to 5 km) anomalies (tiny wiggles) that are highly correlated over the shortest (3.8 km) to longest (120 km) separations in the survey. Magnetic inversions incorporating basement topography show that these anomalies are not caused by the small topographic relief. The character of the near-bottom magnetic profile from anomaly 5 on the west flank of the EPR, formed at a spreading rate more than twice that of the North Pacific, displays a remark-able similarity to the individual and stacked lines from the North Pacific survey area, Over distances corresponding to 1 m.y., 19 lows in the magnetic anomaly profile can be correlated between the North and South Pacific lines. Modeling the lows as due to short polarity events suggests that they may be caused by rapid swings of the magnetic field between normal and reversed polarities with little or no time in the reversed state. Owing to the implausibly high number of reversals required to account for these anomalies and the lack of any time in the reversed state, we conclude that the near-bottom signal is primarily a record of pateointensity fluctuations during chron C5. Spectral analysis of the North Pacific near bottom lines shows that the signal is equivalent to a paleointensity curve with a temporal resolution of 40 to 60 kyr, while measurements of the smallest separations of correlatable dips in the field suggest a temporal resolution of 36 kyr.

Gee, J, Schneider DA, Kent DV.  1996.  Marine magnetic anomalies as recorders of geomagnetic intensity variations. Earth and Planetary Science Letters. 144:327-335.   10.1016/s0012-821x(96)00184-7   AbstractWebsite

In addition to providing a robust record of past geomagnetic polarity reversals, marine magnetic anomalies often show shorter wavelength variations, which may provide information on geomagnetic intensity variations within intervals of constant polarity. To evaluate this possible geomagnetic signal, we compare sea surface profiles of the Central Anomaly with synthetic profiles based on Brunhes age (0-0.78 Ma) paleointensity records derived from deep sea sediments. The similarity of the synthetic profiles and observed profiles from the ultra-fast spreading southern East Pacific Rise suggests that geomagnetic intensity variations play an important role in the magnetization of the oceanic crust. This interpretation is further supported by systematic variations in the pattern of the Central Anomaly at slower spreading ridges, which are entirely consistent with a progressively smoother record of the sediment-derived paleointensity. If the sedimentary records, as calibrated to available absolute paleointensity data, accurately record variations in dipole intensity over the Brunhes, it follows that much of the Brunhes was characterized by geomagnetic intensities lower than either the mean dipole moment for the past 10 ka or the average for the period from 0.05 to 5.0 Ma. Furthermore, the sediment paleointensity records reflect the significant increase in geomagnetic intensity, from a low of similar to 2 x 10(22) Am-2 near 40 ka to a peak value (11 x 10(22) Am-2) at similar to 3 ka, that has been well documented from absolute paleointensity determinations, We suggest that geomagnetic intensity variations may be the most important cause of the rapid changes in the source layer magnetization near the ridge crest and the resultant Central Anomaly Magnetic High.