Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Kent, DV, Kjarsgaard BA, Gee JS, Muttoni G, Heaman LM.  2015.  Tracking the Late Jurassic apparent (or true) polar shift in U-Pb-dated kimberlites from cratonic North America (Superior Province of Canada). Geochemistry Geophysics Geosystems. 16:983-994.   10.1002/2015gc005734   AbstractWebsite

Different versions of a composite apparent polar wander (APW) path of variably selected global poles assembled and averaged in North American coordinates using plate reconstructions show either a smooth progression or a large (approximate to 30 degrees) gap in mean paleopoles in the Late Jurassic, between about 160 and 145 Ma. In an effort to further examine this issue, we sampled accessible outcrops/subcrops of kimberlites associated with high-precision U-Pb perovskite ages in the Timiskaming area of Ontario, Canada. The 154.91.1 Ma Peddie kimberlite yields a stable normal polarity magnetization that is coaxial within less than 5 degrees of the reverse polarity magnetization of the 157.51.2 Ma Triple B kimberlite. The combined approximate to 156 Ma Triple B and Peddie pole (75.5 degrees N, 189.5 degrees E, A95=2.8 degrees) lies about midway between igneous poles from North America nearest in age (169 Ma Moat volcanics and the 146 Ma Ithaca kimberlites), showing that the polar motion was at a relatively steady yet rapid (approximate to 1.5 degrees/Myr) pace. A similar large rapid polar swing has been recognized in the Middle to Late Jurassic APW path for Adria-Africa and Iran-Eurasia, suggesting a major mass redistribution. One possibility is that slab breakoff and subduction reversal along the western margin of the Americas triggered an episode of true polar wander.

Granot, R, Tauxe L, Gee JS, Ron H.  2007.  A view into the Cretaceous geomagnetic field from analysis of gabbros and submarine glasses. Earth and Planetary Science Letters. 256:1-11.   10.1016/j.epsl.2006.12.028   AbstractWebsite

The nature of the geomagnetic field during the Cretaceous normal polarity superchron (CNS) has been a matter of debate for several decades. Numerical geodynamo simulations predict higher intensities, but comparable variability, during times of few reversals than times with frequent reversals. Published geomagnetic paleointensity data from the CNS are highly scattered suggesting that additional studies are required. Here we present new paleointensity results from 18 sites collected from the lower oceanic crust of the Troodos ophiolite, Cyprus (92.1 Ma old). Together with recently published data from the Troodos upper crust we obtain three independent palcointensity time-series. These sequences reveal quasi-cyclic variations of intensities about a mean value of 54 +/- 20 Z Am(2), providing insight into the fluctuating nature of the Cretaceous magnetic field. Our data suggest the CNS field was both weaker and more variable than predicted by geodynamo simulations. The large amplitudes of these variations may explain the wide range of dipole moments previously determined from the CNS. (c) 2007 Elsevier B.V. All rights reserved.

Lawrence, RM, Gee JS, Karson JA.  2002.  Magnetic anisotropy of serpentinized peridotites from the MARK area: Implications for the orientation of mesoscopic structures and major fault zones. Journal of Geophysical Research-Solid Earth. 107   10.1029/2000jb000007   AbstractWebsite

[1] Mantle-derived serpentinized peridotites are exposed both along fracture zones and in areas of extreme tectonic extension at slow to intermediate spreading ridges and may constitute a significant volume of the shallow crust in these environments. Here we examine the potential of magnetic remanence data and structural features in serpentinized peridotites from Ocean Drilling Program (ODP) Site 920 (Mid-Atlantic Ridge south of Kane, MARK) to provide insights into the tectonic processes responsible for the exposure of these deep-seated rocks at the seafloor. Paleomagnetic data from 214 samples from Site 920 document a remarkably consistent inclination (36.1degrees +0.8degrees/ -1.4degrees) that is shallower than either the expected geocentric axial dipole inclination (40.7degrees) or present-day inclination (41.9degrees) at the site. We show that the nearly univectorial remanence in these samples is likely to be a partial thermoremanence, possibly augmented by viscous processes at moderate temperatures. These properties were acquired during cooling from the relatively high temperatures (> 350 degreesC) at which serpentinization occurred. The remanence directions therefore provide some information on the latest stages of uplift of the serpentinite massif. However, interpretation of this tectonic history is complicated by the presence of a pronounced magnetic fabric, which presumably resulted in a deflection of the remanence. We estimate the magnitude and direction of this deflection using a relationship between the anisotropy of magnetic susceptibility and remanence anisotropy. The corrected remanent inclinations (mean 39.5degrees) more closely approximates the time-averaged inclination at the site, indicating that the massif experienced little or no resolvable tilt after serpentinization and cooling to 350 degreesC. Accounting for the anisotropy-related deflection of the remanence also allows us to more accurately restore various structural features within the core to their geographic orientation. After this reorientation the dominant mesoscopic foliation in these rocks, defined by the preferred orientation of orthopyroxene and subparallel serpentine veins, has an average orientation that closely parallels the regional-scale fault zones on the western median valley wall.

Dick, HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu YL, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm HU, Yoshinobu A.  2000.  A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters. 179:31-51.   10.1016/s0012-821x(00)00102-3   AbstractWebsite

Ocean Drilling Program Leg 176 deepened Hole 735B in gabbroic lower ocean crust by 1 km to 1.5 km. The section has the physical properties of seismic layer 3, and a total magnetization sufficient by itself to account for the overlying lineated sea-sur face magnetic anomaly. The rocks from Hole 735B are principally olivine gabbro, with evidence for two principal and many secondary intrusive events. There are innumerable late small ferrogabbro intrusions, often associated with shear zones that cross-cut the olivine gabbros. The ferrogabbros dramatically increase upward in the section. Whereas there are many small patches of ferrogabbro representing late iron- and titanium-rich melt trapped intragranularly in olivine gabbro, most late melt was redistributed prior to complete solidification by compaction and deformation. This, rather than in situ upward differentiation of a large magma body, produced the principal igneous stratigraphy, The computed bulk composition of the hole is too evolved to mass balance mid-ocean ridge basalt back to a primary magma, and there must be a significant mass of missing primitive cumulates. These could lie either below the hole or out of the section. Possibly the gabbros were emplaced by along-axis intrusion of moderately differentiated melts into the near-transform environment. Alteration occurred in three stages. High-temperature granulite- to amphibolite-facies alteration is most important. coinciding with brittle-ductile deformation beneath the ridge. Minor greenschist-facies alteration occurred under largely static conditions, likely during block uplift at the ridge transform intersection. Late post-uplift low-temperature alteration produced locally abundant smectite, often in previously unaltered areas. The most important features of the high- and low-temperature alteration are their respective associations with ductile and cataclastic deformation, and an overall decrease downhole with hydrothermal alteration generally less than or equal to 5% in the bottom kilometer. Hole 735B provides evidence for a strongly heterogeneous lower ocean crust, and for;he inherent Interplay of deformation. alteration and igneous processes at slow-spreading ridges. It is strikingly different from gabbros sampled from fast-spreading ridges and at most well-described ophiolite complexes. We attribute this to the remarkable diversity of tectonic environments where crustal accretion occurs in the oceans and to the low probability of a section of old slow-spread crust found near a major large-offset transform being emplaced on-land compared to sections of young crust from small ocean basins. (C) 20()() Elsevier Science B.V. All rights reserved.