Publications

Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Bowles, JA, Gee JS, Jackson MJ, Avery MS.  2015.  Geomagnetic paleointensity in historical pyroclastic density currents: Testing the effects of emplacement temperature and postemplacement alteration. Geochemistry Geophysics Geosystems. 16:3607-3625.   10.1002/2015gc005910   AbstractWebsite

Thellier-type paleointensity experiments were conducted on welded ash matrix or pumice from the 1912 Novarupta (NV) and 1980 Mt. St. Helens (MSH) pyroclastic density currents (PDCs) with the intention of evaluating their suitability for geomagnetic paleointensity studies. PDCs are common worldwide, but can have complicated thermal and alteration histories. We attempt to address the role that emplacement temperature and postemplacement hydrothermal alteration may play in nonideal paleointensity behavior of PDCs. Results demonstrate two types of nonideal behavior: unstable remanence in multidomain (MD) titanomagnetite, and nonideal behavior linked to fumarolic and vapor phase alteration. Emplacement temperature indirectly influences MSH results by controlling the fraction of homogenous MD versus oxyexsolved pseudo-single domain titanomagnetite. NV samples are more directly influenced by vapor phase alteration. The majority of NV samples show distinct two-slope behavior in the natural remanent magnetizationpartial thermal remanent magnetization plots. We interpret this to arise from a (thermo)chemical remanent magnetization associated with vapor phase alteration, and samples with high water content (>0.75% loss on ignition) generate paleointensities that deviate most strongly from the true value. We find that PDCs can be productively used for paleointensity, but thatas with all paleointensity studiescare should be taken in identifying potential postemplacement alteration below the Curie temperature, and that large, welded flows may be more alteration-prone. One advantage in using PDCs is that they typically have greater areal (spatial) exposure than a basalt flow, allowing for more extensive sampling and better assessment of errors and uncertainty.

2013
Tauxe, L, Gee JS, Steiner MB, Staudigel H.  2013.  Paleointensity results from the Jurassic: New constraints from submarine basaltic glasses of ODP Site 801C. Geochemistry, Geophysics, Geosystems.   10.1002/2013GC004704   AbstractWebsite

Tholeiite of the oldest oceanic crust was drilled during ODP Legs 129 and 185 at Hole 801C in the western Pacific. Fresh appearing submarine basaltic glass (SBG) was recovered from the tholetiites (~167 Ma; Koppers et al. [2003]) which has been shown to be nearly ideal for determining absolute paleointensity. Paleointensities of the younger, off-axis, alkalic basalts (~160 Ma; Koppers et al. [2003]), overlying the tholeiites, had been studied earlier [Tauxe, 2006]. Here we report results from the older tholeiitic (on-axis) sequence. We subjected a total of 73 specimens from 17 cooling units to absolute paleointensity experiments. Of these, 30 specimens and 6 cooling unit averages met our strictest reliability criteria, yielding an average of 11.9± 3.9 μT. The bulk of evidence suggests a paleolatitude of the site of 14°S (with an uncertainty of 10°). This translates the intensity to a value for the virtual axial dipole moment of 28 ZAm2, slightly lower than values determined from the plagio clase crystals in the three cooling units of the younger alkalic basalts over lying the tholeiites. This value is low when compared to the long-term median value of the field of 42 ZAm2. Our results and those of the published literature therefore support the contention of a low magnetic field strength in the Jurassic (average of 28 ± 14 ZAm2; N = 138 individual estimates), as initially suggested by Prévot et al. [1990]. Our interpretation of the body of available data argue for low field strengths for the entire Jurassic extending into the early Cretaceous.

2011
Bowles, JA, Gee JS, Burgess K, Cooper RF.  2011.  Timing of magnetite formation in basaltic glass: Insights from synthetic analogs and relevance for geomagnetic paleointensity analyses. Geochemistry Geophysics Geosystems. 12   10.1029/2010gc003404   AbstractWebsite

Absolute paleointensity estimates from submarine basaltic glass (SBG) typically are of high technical quality and accurately reflect the ambient field when known. SBG contains fine-grained, low-Ti magnetite, in contrast to the high-Ti magnetite in crystalline basalt, which has lead to uncertainty over the origin of the magnetite and its remanence in SBG. Because a thermal remanence is required for accurate paleointensity estimates, the timing and temperature of magnetite formation is crucial. To assess these factors, we generated a suite of synthetic glasses with variable oxygen fugacity, cooling rate, and FeO* content. Magnetic properties varied most strongly with crystallinity; less crystalline specimens are similar to natural SBG and have weaker magnetization, a greater superparamagnetic contribution, and higher unblocking temperatures than more crystalline specimens. Thellier-type paleointensity results recovered the correct field within 1 sigma error with 2 (out of 10) exceptions that likely result from an undetected change in the laboratory field. Unblocking and ordering temperature data demonstrate that low-Ti magnetite is a primary phase, formed when the glass initially quenched. Although prolonged heating at high temperatures (during paleointensity experiments) may result in minor alteration at temperatures <580 degrees C, this does not appear to impact the accuracy of the paleointensity estimate. Young SBG is therefore a suitable material for paleointensity studies.

2010
Burgess, K, Cooper RF, Bowles JA, Gee JS, Cherniak DJ.  2010.  Effects of open and closed system oxidation on texture and magnetic response of remelted basaltic glass. Geochemistry Geophysics Geosystems. 11   10.1029/2010gc003248   AbstractWebsite

As part of an experimental and observational study of the magnetic response of submarine basaltic glass (SBG), we have examined, using ion backscattering spectrometry (RBS), transmission and scanning electron microscopy, energy dispersive X-ray spectrometry, and surface X-ray diffraction, the textures wrought by the controlled, open and closed system oxidation of glasses prepared by the controlled environment remelting and quenching of natural SBG. Initial compositions with similar to 9 wt % FeO* were melted at 1430 degrees C with the oxygen fugacity buffered at fayalite-magnetite-quartz; melts were cooled at a rate of 200 degrees C min(-1) near the glass transition (T(g) = 680 degrees C). In open system experiments, where chemical exchange is allowed to occur with the surrounding atmosphere, polished pieces of glass were reheated to temperatures both below and above T(g) for times 1-5000 h; undercooled melts were oxidized at 900 degrees C and 1200 degrees C for 18 and 20 h, respectively. RBS demonstrates unequivocally that the dynamics of open system oxidation involves the outward motion of network-modifying cations. Oxidation results in formation of a Fe-, Ca-, and Mg-enriched surface layer that consists in part of Ti-free nanometer-scale ferrites; a divalentcation- depleted layer is observed at depths >1 mu m. Specimens annealed/oxidized above T(g) have magnetizations elevated by 1-2 orders of magnitude relative to the as-quenched material; this does not appear to be related to the surface oxidation. Quenched glass (closed system, i.e., no chemical exchange between sample and atmosphere) exhibits very fine scale chemical heterogeneities that coarsen with time under an electron beam; this metastable amorphous immiscibility is the potential source for the nucleation of ferrites with a wide range of Ti contents, ferrites not anticipated from an equilibrium analysis of the bulk basalt composition.

Gee, JS, Yu YJ, Bowles J.  2010.  Paleointensity estimates from ignimbrites: An evaluation of the Bishop Tuff. Geochemistry Geophysics Geosystems. 11   10.1029/2009gc002834   AbstractWebsite

Ash flow tuffs, or ignimbrites, typically contain fine-grained magnetite, spanning the superparamagnetic to single-domain size range that should be suitable for estimating geomagnetic field intensity. However, ignimbrites may have a remanence of thermal and chemical origin as a result of the complex magnetic mineralogy and variations in the thermal and alteration history. We examined three stratigraphic sections through the similar to 0.76 Ma Bishop Tuff, where independent information on postemplacement cooling and alteration is available, as a test of the suitability of ignimbrites for paleointensity studies. Thermomagnetic curves suggest that low-Ti titanomagnetite (T(c) = 560 degrees C-580 degrees C) is the dominant phase, with a minor contribution from a higher Tc phase(s). Significant remanence unblocking above 580 degrees C suggests that maghemite and/or (titano)maghemite is an important contributor to the remanence in most samples. We obtained successful paleofield estimates from remanence unblocked between 440 degrees C and 580 degrees C for 46 of 89 specimens (15 sites at two of three total localities). These specimens represent a range of degrees of welding and have variable alteration histories and yet provide a consistent paleofield estimate of 43.0 mu T (+/- 3.2), equivalent to a VADM of 7.8 x 10(22) Am(2). The most densely welded sections of the tuff have emplacement temperatures inferred to be as high as similar to 660 degrees C, suggesting that the remanence may be primarily thermal in origin, though a contribution from thermochemical remanence cannot be excluded. These results suggest that ignimbrites may constitute a viable material for reliable paleointensity determinations.

2009
Granot, R, Cande SC, Gee JS.  2009.  The implications of long-lived asymmetry of remanent magnetization across the North Pacific fracture zones. Earth and Planetary Science Letters. 288:551-563.   10.1016/j.epsl.2009.10.017   AbstractWebsite

Large marine magnetic anomalies accompany the Pacific fracture zones (FZs) for thousands of kilometers. Although the origin of these anomalies is poorly understood, their underlying magnetization contrasts should reflect the temporal record of crustal accretion as well as geomagnetic field variations. Here we present an analysis of archival and newly collected magnetic anomaly profiles measured across three FZs from the North Pacific Cretaceous Quiet Zone (120.6 to 83 Ma) that are characterized by a remarkably uniform shape. Forward and inverse modeling indicate that these anomalies arise from remanent magnetization, with enhanced remanence located on one side of each FZ along the entire studied area. A comparison of geochemical and magnetic data from active ridge discontinuities and transform faults suggests that elevated iron content near segment ends is likely responsible for the observed anomalies in the Cretaceous Quiet Zone as well. A more complex magnetization setting is observed where the FZs contain multiple faults. There, the simple model of one-sided enhancements is only partly valid. Comparison between 3D forward modeling of the Quiet Zone magnetization and the calculated magnetization contrasts found across the Pioneer and Pau FZs suggests that the intensity of the geomagnetic field during the Cretaceous superchron had less than 50 percent variability about its average value. No major trends in the strength of the geomagnetic field during the superchron are observed. The presence of long-duration (> 30 m.y.) zones of enhanced magnetization along the young/old sides of the Pioneer/Pau FZs (both left-stepping) requires some long-lived asymmetry in crustal construction processes near ridge-transform intersections. Although the underlying mechanism that controls this long-lived asymmetry remains unclear, absolute plate motions might explain this asymmetry. Shorter period (few m.y.) variations in the amplitudes of the enhancements probably result from oscillations in crustal construction. (C) 2009 Elsevier B.V. All rights reserved.

2007
Selkin, PA, Gee JS, Tauxe L.  2007.  Nonlinear thermoremanence acquisition and implications for paleointensity data. Earth and Planetary Science Letters. 256:81-89.   10.1016/j.epsl.2007.01.017   AbstractWebsite

In paleointensity studies, thermoremanence is generally regarded as a linear function of ambient inagnetic field at low fields comparable to that of the present-day Earth. We find pronounced nonlinearity at low fields for a class of materials with silicate-hosted magnetite that otherwise perforin well in paleointensity experiments. We model this nonlinearity with narrow size ranges of large, acicular single domain grains, which are most likely in a vortex state (i.e. nonuniformly magnetized, sometimes labeled pseudosingle domain). Simple TRM theory predicts that even certain single domain particles will also exhibit a nonlinear response, saturating in fields as low as the Earth's. Such behavior, although likely to be rare, may bias some paleointensity estimates. The bias is especially pronounced when the laboratory field is higher than the ancient field. Fortunately, the fundamental assumption that thermoremanence is proportional to applied field can (and should) be routinely checked at the end of successful paleointensity experiments by adding two extra heating steps. (c) 2007 Elsevier B.V. All rights reserved.

2006
Bowles, J, Gee JS, Kent DV, Perfit MR, Soule SA, Fornari DJ.  2006.  Paleointensity applications to timing and extent of eruptive activity, 9 degrees-10 degrees N East Pacific Rise. Geochemistry Geophysics Geosystems. 7   10.1029/2005gc001141   AbstractWebsite

[ 1] Placing accurate age constraints on near-axis lava flows has become increasingly important given the structural and volcanic complexity of the neovolcanic zone at fast spreading ridges. Geomagnetic paleointensity of submarine basaltic glass (SBG) holds promise for placing quantitative age constraints on near-axis flows. In one of the first extensive tests of paleointensity as a dating tool or temporal marker we present the results of over 550 successful SBG paleointensity estimates from 189 near-axis (< 4 km) sites at the East Pacific Rise, 9 degrees - 10 degrees N. Paleointensities range from 6 to 53 mu T and spatially correspond to the pattern expected from known temporal variations in the geomagnetic field. Samples within and adjacent to the axial summit trough (AST) have values approximately equal to or slightly higher than the present-day. Samples out to 1 - 3 km from the AST have values higher than the present-day, and samples farther off axis have values lower than the present-day. The on-axis samples (< 500 m from the AST) provide a test case for using models of paleofield variation for the past few hundred years as an absolute dating technique. Results from samples collected near a well-documented eruption in 1991 - 1992 suggest there may be a small negative bias in the paleointensity estimates, limiting resolution of the dating technique. Possible explanations for such a bias include local field anomalies produced by preexisting magnetic terrain; anomalously high magnetic unblocking temperatures, leading to a small cooling rate bias; and/or the possibility of a chemical remanence produced by in situ alteration of samples likely to have complicated thermal histories. Paleointensity remains useful in approximating age differences in young flows, and a clear along-axis paleointensity contrast near 9 degrees 50'N is suggestive of a similar to 150 - 200 year age difference. Paleointensity values of off-axis samples are generally consistent with rough age interpretations based on side scan data. Furthermore, spatial patterns in the paleointensity suggest extensive off-axis flow emplacement may occur infrequently, with recurrence intervals of 10 - 20 kyr. Results of a stochastic model of lava emplacement show that this can be achieved with a single distribution of flows, with flow size linked to time between eruptions.

2005
Bowles, J, Gee JS, Kent DV, Bergmanis E, Sinton J.  2005.  Cooling rate effects on paleointensity estimates in submarine basaltic glass and implications for dating young flows. Geochemistry Geophysics Geosystems. 6   10.1029/2004gc000900   AbstractWebsite

Cooling rate effects on the intensity of thermoremanent magnetization (TRM) have been well documented in ceramics. In that case, laboratory cooling is generally more rapid than the initial cooling, leading to an overestimate of the paleofield by 5-10% in Thellier-type paleointensity experiments. The reverse scenario, however, has never been tested. We examine the effects of cooling rate on paleointensity estimates from rapidly quenched submarine basaltic glass (SBG) samples from 13 sites at 17 degrees 30'-18 degrees 30'S on the East Pacific Rise. Absolute cooling rates determined by relaxation geospeedometry at five of these sites range from similar to 10 to similar to 330 degrees C min(-1) at the glass transition (similar to 650 degrees C). Over the dominant range of remanence blocking temperatures (similar to 200-400 degrees C), the natural cooling rates are approximately equal to or slightly slower than the laboratory cooling rates during the Thellier experiment. These results suggest that while the cooling rate effect might introduce some within-site scatter, it should not result in a systematic bias in paleointensity from SBG. Paleointensity estimates from the 15 sites range from similar to 29 to 59 mu T, with an average standard error of similar to 1 mu T. Comparison with models of geomagnetic field intensity variations at the site indicate the youngest group of samples is very recent (indistinguishable from present-day) and the oldest is at least 500, and probably several thousand, years old. These age estimates are consistent with available radiometric ages and geologic observations.

2000
Gee, JS, Cande SC, Hildebrand JA, Donnelly K, Parker RL.  2000.  Geomagnetic intensity variations over the past 780 kyr obtained from near-seafloor magnetic anomalies. Nature. 408:827-832.   10.1038/35048513   AbstractWebsite

Knowledge of past variations in the intensity of the Earth's magnetic field provides an important constraint on models of the geodynamo. A record of absolute palaeointensity for the past 50 kyr has been compiled from archaeomagnetic and volcanic materials, and relative palaeointensities over the past 800 kyr have been obtained from sedimentary sequences. But a long-term record of geomagnetic intensity should also be carried by the thermoremanence of the oceanic crust. Here we show that near-seafloor magnetic anomalies recorded over the southern East Pacific Rise are well correlated with independent estimates of geomagnetic intensity during the past 780 kyr. Moreover, the pattern of absolute palaeointensity of seafloor glass samples from the same area agrees with the well-documented dipole intensity pattern for the past 50 kyr. A comparison of palaeointensities derived from seafloor glass samples with global intensity variations thus allows us to estimate the ages of surficial lava flows in this region. The record of geomagnetic intensity preserved in the oceanic crust should provide a higher-time-resolution record of crustal accretion processes at mid-ocean ridges than has previously been obtainable.

1998
Juarez, MT, Tauxe L, Gee JS, Pick T.  1998.  The intensity of the Earth's magnetic field over the past 160 million years. Nature. 394:878-881.   10.1038/29746   AbstractWebsite

In contrast to our detailed knowledge of the directional behaviour of the Earth's magnetic field during geological and historical times(1,2), data constraining the past intensity of the field remain relatively scarce. This is mainly due to the difficulty in obtaining reliable palaeointensity measurements, a problem that is intrinsic to the geological materials which record the Earth's magnetic field. Although the palaeointensity database has grown modestly over recent years(3-5), these data are restricted to a few geographical locations and more than one-third of the data record the field over only the past 5 Myr-the most recent database(5) covering the time interval from 5 to 160 Myr contains only about 100 palaeointensity measurements. Here we present 21 new data points from the interval 5-160 Myr obtained from submarine basalt glasses collected from locations throughout the world's oceans. Whereas previous estimates for the average dipole moment were comparable to that of the Earth's present field(6), the new data suggest an average dipole moment of (4.2 +/- 2.3) x 10(22) A m(2), or approximately half the present magnetic-field intensity. This lower average value should provide an important constraint for future efforts to model the convective processes in the Earth's core which have been responsible for generating the magnetic field.