Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Yu, YJ, Tauxe L, Gee JS.  2007.  A linear field dependence of thermoremanence in low magnetic fields. Physics of the Earth and Planetary Interiors. 162:244-248.   10.1016/j.pepi.2007.04.008   AbstractWebsite

We tested a linear field-dependence of thermoremanent magnetization (TRM) to saturation isothermal remanent magnetization (SIRM) ratio for magnetite-containing natural samples. The TRM/SIRM shows a linear field-dependence to very low field ranges (<1 mu T). This observation is at odds with a claim of limited sensitivity at low fields in TRM acquisition documented in previous studies. We attribute the difference to poor field control in the ovens used in previous studies. The TRM/SIRM ratio shows a grain-size dependence. For magnetite-containing samples with insignificant anisotropy, the TRM/SIRM is most efficient in pseudo-single-domain magnetites. These results suggest that while the TRM/SIRM ratio is linear at low field strengths, the ratio provides only a crude estimation on the actual paleo-field within two orders of magnitude, suggesting that a careful sample characterization is necessary in applying the TRM/SIRM as a paleointensity proxy. (c) 2007 Elsevier B.V. All rights reserved.

Selkin, PA, Gee JS, Tauxe L, Meurer WP, Newell AJ.  2000.  The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex. Earth and Planetary Science Letters. 183:403-416.   10.1016/s0012-821x(00)00292-2   AbstractWebsite

Paleomagnetism of Archean rocks potentially provides information about the early development of the Earth and of the geodynamo. Precambrian layered intrusive rocks are good candidates for paleomagnetic studies: such complexes are commonly relatively unaltered and may contain some single-domain magnetite 'armored' by silicate mineral grains. However, layered intrusives often have a strong petrofabric that may result in a strong remanence anisotropy. Magnetic anisotropy can have particularly disastrous consequences for paleointensity experiments if the anisotropy is unrecognized and if its effects remain uncorrected. Here we examine the magnetic anisotropy of an anorthosite sample with a well-developed magmatic foliation. The effect of the sample's remanence fabric on paleointensity determinations is significant: paleointensities estimated by the method of Thellier and Thellier range from 17 to 55 muT for specimens magnetized in a field of 25 muT. We describe a technique based on the remanence anisotropy tensor to correct paleointensity estimates for the effects of magnetic fabric and use it to estimate a paleointensity for the Stillwater Complex (MT, USA) of similar to 32 muT (adjusted for the effects of slow cooling). (C) 2000 Elsevier Science B.V. All rights reserved.