Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
1998
Gee, J, Kent DV.  1998.  Magnetic telechemistry and magmatic segmentation on the southern east Pacific rise. Earth and Planetary Science Letters. 164:379-385.   10.1016/s0012-821x(98)00231-3   AbstractWebsite

Results from axial dredges and a profile inversion of magnetic anomaly data along the axis of the East Pacific Rise (EPR) at 13-23 degrees S provide an estimate of the average degree of fractionation for the extrusive layer at this ultrafast-spreading (similar to 145 mm/yr full rate) ridge. We find a high correlation (R = 0.81) between dredge mean FeO* (total iron as FeO) and natural remanence for 34 axial dredges with multiple samples having coincident geochemical and magnetic data. We attribute this good correlation to detailed sampling spanning the full range of cooling-related magnetization changes within a flow and to the young age (0-6 ka) of these axial samples, which effectively minimizes time-dependent magnetization changes due to geomagnetic intensity or alteration. A composite axial magnetic anomaly profile shows large amplitude (up to 400 nT) fluctuations with wavelengths of 50-200 km, which theoretical considerations suggest can reliably be related to the magnetization directly beneath the ship. For much of the southern EPR, seismic data provide independent limits on the axial thickness (259 +/- 55 m) and the pattern of off-axis thickening of the extrusive magnetic source layer. These data also provide evidence for an axial magma lens that effectively eliminates anomaly contributions from deeper magnetic sources. Inversion of the axial magnetic anomaly data utilizing these geophysical constraints yields a magnetization solution which, through use of the regression relating FeO* and natural remanence, may be related to the average degree of differentiation of the extrusive source layer. The magnetic data reveal a pattern of magmatic segmentation that closely parallels the tectonic segmentation of the ridge, suggesting that magma supply may be an important control on the average degree of differentiation of the extrusive layer. (C) 1998 Elsevier Science B.V. All rights reserved.

1997
Gee, J, Kent DV.  1997.  Magnetization of axial lavas from the southern East Pacific Rise (14 degrees-23 degrees S): Geochemical controls on magnetic properties. Journal of Geophysical Research-Solid Earth. 102:24873-24886.   10.1029/97jb02544   AbstractWebsite

Although the spatial association of iron-rich lavas and high-amplitude magnetic anomalies is well documented, a causal link between enhanced iron content and high remanent magnetization has been difficult to establish. Here we report magnetic data from approximately 250 samples, with 8-16% FeO* (total iron as FeO), from the southern East Pacific Rise (EPR) that provide strong support for the presumed geochemical dependence of remanent intensity. The limited age range (0-6 ka) of axial lavas from this ultrafast spreading ridge (similar to 150 mm/yr full rate) effectively minimizes variations resulting from time dependent chan or low-temperature alteration. Systematic sampling relative to the chilled margin illustrates that substantial grain size-related variations in magnetic properties occur on a centimeter scale. Both microprobe data and Curie temperatures suggest that the average groundmass titanomagnetite composition in the southern EPR samples is approximately constant (modal modified ulvospinel content = 0.67) over a wide range of lava compositions. Saturation magnetization and saturation remanence are highly correlated with FeO* (R = 0.73 and 0.83, respectively), indicating that more iron-rich lavas have higher abundances of otherwise similar titanomagnetite. We show that there is a good correlation between natural remanent magnetization (NRM) and FeO*, provided that sufficient specimens are used to determine the average NRM of a sample (R = 0.63). Because the range of iron contents in mid-ocean ridge basalts is limited, the best fit slope (4.44 A/m per %FeO* in an ambient field of 0.030 mT) should provide reasonable bounds on the equatorial magnetization of submarine lavas (similar to 10 A/m at 8.5% FeO* and similar to 50 A/m at similar to 16% FeO*). Finally, we demonstrate that along-axis variations in NRM closely parallel geochemical changes along the southern EPR. Where magnetization values deviate significantly from those predicted from the range of measured FeO* contents, these discrepancies may reflect additional unrecognized geochemical variability.