Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Cheadle, MJ, Gee JS.  2017.  Quantitative textural insights into the formation of gabbro in mafic intrusions. Elements. 13:409-414.   10.2138/gselements.13.6.409   AbstractWebsite

Rock textures provide a key to deciphering the physical processes by which gabbro forms in mafic intrusions. Developments in both direct optical and crystallographic methods, as well as indirect magnetic fabric measurements, promise significant advances in understanding gabbroic textures. Here, we illustrate how bulk magnetic fabric data, particularly from intrusions with sparse silicate-hosted magnetite, may be used to extend direct crystallographic observations from thin sections. We also present a scheme for characterizing crystallographic foliation and lineation and use this to suggest that the strength of gabbro plagioclase foliations and lineations varies significantly with geodynamic environment.

Koppers, AAP, Yamazaki T, Geldmacher J, Gee JS, Pressling N, Hoshi H, Anderson L, Beier C, Buchs DM, Chen LH, Cohen BE, Deschamps F, Dorais MJ, Ebuna D, Ehmann S, Fitton JG, Fulton PM, Ganbat E, Hamelin C, Hanyu T, Kalnins L, Kell J, Machida S, Mahoney JJ, Moriya K, Nichols ARL, Rausch S, Sano SI, Sylvan JB, Williams R.  2012.  Limited latitudinal mantle plume motion for the Louisville hotspot. Nature Geoscience. 5:911-917.   10.1038/ngeo1638   AbstractWebsite

Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave narrow trails of volcanic seamounts as a tectonic plate moves over their location. These seamount trails are excellent recorders of Earth's deep processes and allow us to untangle ancient mantle plume motions. During ascent it is likely that mantle plumes are pushed away from their vertical upwelling trajectories by mantle convection forces. It has been proposed that a large-scale lateral displacement, termed the mantle wind, existed in the Pacific between about 80 and 50 million years ago, and shifted the Hawaiian mantle plume southwards by about 15 degrees of latitude. Here we use Ar-40/Ar-39 age dating and palaeomagnetic inclination data from four seamounts associated with the Louisville hotspot in the South Pacific Ocean to show that this hotspot has been relatively stable in terms of its location. Specifically, the Louisville hotspot-the southern hemisphere counterpart of Hawai'i-has remained within 3-5 degrees of its present-day latitude of about 51 degrees S between 70 and 50 million years ago. Although we cannot exclude a more significant southward motion before that time, we suggest that the Louisville and Hawaiian hotspots are moving independently, and not as part of a large-scale mantle wind in the Pacific.

Gee, JS, Meurer WP, Selkin PA, Cheadle MJ.  2004.  Quantifying three-dimensional silicate fabrics in cumulates using cumulative distribution functions. Journal of Petrology. 45:1983-2009.   10.1093/petrology/egh045   AbstractWebsite

We present a new method for quantifying three-dimensional silicate fabrics and the associated uncertainties from grain orientation data on three orthogonal sections. Our technique is applied to the orientation of crystallographic features and, hence, yields a fabric related to the lattice-preferred orientation, although the method could be applied to shape-preferred orientations or strain analysis based on passive linear markers. The orientation data for each section are represented by their cumulative distribution function, and an iterative procedure is used to find the symmetric second-rank strain tensor that will simultaneously satisfy the cumulative distribution functions observed on each section. For samples with well-developed fabrics, this technique provides a much closer match to the sectional data than do previous techniques based on eigenparameter analysis of two-dimensional orientation data. Robust uncertainty estimates are derived from a non-parametric bootstrap resampling scheme. The method is applied to two cumulates: one with a well-developed fabric and the other with a weak fabric, from the Stillwater complex, Montana. The silicate petrofabric orientations obtained for these samples compare favorably with independent direct estimates of the volume fabric from electron backscatter diffraction and magnetic techniques.

Selkin, PA, Gee JS, Tauxe L, Meurer WP, Newell AJ.  2000.  The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex. Earth and Planetary Science Letters. 183:403-416.   10.1016/s0012-821x(00)00292-2   AbstractWebsite

Paleomagnetism of Archean rocks potentially provides information about the early development of the Earth and of the geodynamo. Precambrian layered intrusive rocks are good candidates for paleomagnetic studies: such complexes are commonly relatively unaltered and may contain some single-domain magnetite 'armored' by silicate mineral grains. However, layered intrusives often have a strong petrofabric that may result in a strong remanence anisotropy. Magnetic anisotropy can have particularly disastrous consequences for paleointensity experiments if the anisotropy is unrecognized and if its effects remain uncorrected. Here we examine the magnetic anisotropy of an anorthosite sample with a well-developed magmatic foliation. The effect of the sample's remanence fabric on paleointensity determinations is significant: paleointensities estimated by the method of Thellier and Thellier range from 17 to 55 muT for specimens magnetized in a field of 25 muT. We describe a technique based on the remanence anisotropy tensor to correct paleointensity estimates for the effects of magnetic fabric and use it to estimate a paleointensity for the Stillwater Complex (MT, USA) of similar to 32 muT (adjusted for the effects of slow cooling). (C) 2000 Elsevier Science B.V. All rights reserved.

Staudigel, H, Gee J, Tauxe L, Varga RJ.  1992.  Shallow Intrusive Directions of Sheeted Dikes in the Troodos Ophiolite - Anisotropy of Magnetic-Susceptibility and Structural Data. Geology. 20:841-844.   10.1130/0091-7613(1992)020<0841:sidosd>;2   AbstractWebsite

Sheeted dikes play a central role in the formation of oceanic crust. It is commonly assumed that sheeted dikes intrude vertically upward, from elongated mid-ocean ridge (MOR) magma chambers, but there are no direct observational data bearing on this hypothesis. This assumption contrasts with the intrusive behavior of subaerial volcanoes where magmas rise into shallow central magma chambers that laterally feed vertically oriented dikes. We have studied intrusive directions of sheeted dikes in a structural analogue to oceanic crust, the Troodos ophiolite. Structural and magnetic fabric data of 65 dikes provide consistent results and suggest a broad distribution of shallow (<20-degrees) to nearly vertical, upward magma-transport directions. These data suggest that horizontal emplacement has to be considered for sheeted dikes at MORs, implying more centralized MOR plumbing systems than previously thought. Such plumbing systems provide ample opportunity for complex mixing, fractionation, and contamination of MOR lavas in magma chambers and tabular magma-storage volumes. Whether the MOR magma supply is linear or centralized also has a fundamental effect on crustal accretion processes and the geometry of hydrothermal convection systems.