Publications

Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Schoolmeesters, N, Cheadle MJ, John BE, Reiners PW, Gee J, Grimes CB.  2012.  The cooling history and the depth of detachment faulting at the Atlantis Massif oceanic core complex. Geochemistry Geophysics Geosystems. 13   10.1029/2012gc004314   AbstractWebsite

Oceanic core complexes (OCCs) are domal exposures of oceanic crust and mantle interpreted to be denuded to the seafloor by large slip oceanic detachment faults. We combine previously reported U-Pb zircon crystallization ages with (U-Th)/He zircon thermochronometry and multicomponent magnetic remanence data to determine the cooling history of the footwall to the Atlantis Massif OCC (30 degrees N, MAR) and help establish cooling rates, as well as depths of detachment faulting and gabbro emplacement. We present nine new (U-Th)/He zircon ages for samples from IODP Hole U1309D ranging from 40 to 1415 m below seafloor. These data paired with U-Pb zircon ages and magnetic remanence data constrain cooling rates of gabbroic rocks from the upper 800 m of the central dome at Atlantis Massif as 2895 (+1276/-1162) degrees C Myr(-1) (from similar to 780 degrees C to similar to 250 degrees C); the lower 600 m of the borehole cooled more slowly at mean rates of similar to 500 (+125/-102) degrees C Myr(-1) (from similar to 780 degrees C to present-day temperatures). Rocks from the uppermost part of the hole also reveal a brief period of slow cooling at rates of similar to 300 degrees C Myr(-1), possibly due to hydrothermal circulation to similar to 4 km depth through the detachment fault zone. Assuming a fault slip rate of 20 mm/yr (from U-Pb zircon ages of surface samples) and a rolling hinge model for the sub-surface fault geometry, we predict that the 780 degrees C isotherm lies at similar to 7 km below the axial valley floor, likely corresponding both to the depth at which the semi-brittle detachment fault roots and the probable upper limit of significant gabbro emplacement.

2009
Morris, A, Gee JS, Pressling N, John BE, MacLeod CJ, Grimes CB, Searle RC.  2009.  Footwall rotation in an oceanic core complex quantified using reoriented Integrated Ocean Drilling Program core samples. Earth and Planetary Science Letters. 287:217-228.   10.1016/j.epsl.2009.08.007   AbstractWebsite

Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. The common occurrence of these structures in slow and ultra-slow spread oceanic crust suggests that they accommodate a significant component of plate divergence. However, the subsurface geometry of detachment faults in oceanic core complexes remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We address this debate using palaeomagnetic remanences as markers for tectonic rotation within a unique 1.4 km long footwall section of gabbroic rocks recovered by Integrated Ocean Drilling Program (IODP) sampling at Atlantis Massif oceanic core complex on the Mid-Atlantic Ridge (MAR). These rocks contain a complex record of multipolarity magnetizations that are unrelated to alteration and igneous stratigraphy in the sampled section and are inferred to result from progressive cooling of the footwall section over geomagnetic polarity chrons C1r.2r, C1r.1n (Jaramillo) and C1r.1r. For the first time we have independently reoriented drill-core samples of lower crustal gabbros, that were initially azimuthally unconstrained, to a true geographic reference frame by correlating structures in individual core pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of the palaeomagnetic data, placing far more rigorous constraints on the tectonic history than those possible using only palaeomagnetic inclination data. Analysis of the reoriented high temperature reversed component of magnetization indicates a 46 degrees +/- 6 degrees anticlockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011 degrees +/- 6 degrees. Reoriented lower temperature components of normal and reversed polarity suggest that much of this rotation occurred after the end of the Jaramillo chron (0.99 Ma). The data provide unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby oceanic detachment faults initiate at higher dips and rotate to their present day low-angle geometries as displacement increases. (C) 2009 Elsevier B.V. All rights reserved.

2007
Garces, M, Gee JS.  2007.  Paleomagnetic evidence of large footwall rotations associated with low-angle faults at the Mid-Atlantic Ridge. Geology. 35:279-282.   10.1130/g23165a.1   AbstractWebsite

Exposures of gabbros and mantle-derived peridotites; at slow-spreading oceanic ridges have been attributed to extension on long-lived, low-angle detachment faults, similar to those described in continental metamorphic core complexes. In continental settings, such detachments have been interpreted as having originated and remained active at shallow dips. Alternatively, currently shallow dipping fault surfaces may have originated at moderate to steep dips and been flattened by subsequent flexure and isostatic uplift. While the latter interpretation would be more consistent with Andersonian faulting theory, it predicts large footwall tilts that have not been observed in continental detachment faults. Here we use the magnetization of oceanic gabbro and peridotite samples exposed near the Fifteen-Twenty Fracture Zone on the Mid-Atlantic Ridge to demonstrate that substantial footwall rotations have occurred. Widespread rotations ranging from 50 degrees to 80 degrees indicate that original fault orientations dipped steeply toward the spreading axis.

2000
Selkin, PA, Gee JS, Tauxe L, Meurer WP, Newell AJ.  2000.  The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex. Earth and Planetary Science Letters. 183:403-416.   10.1016/s0012-821x(00)00292-2   AbstractWebsite

Paleomagnetism of Archean rocks potentially provides information about the early development of the Earth and of the geodynamo. Precambrian layered intrusive rocks are good candidates for paleomagnetic studies: such complexes are commonly relatively unaltered and may contain some single-domain magnetite 'armored' by silicate mineral grains. However, layered intrusives often have a strong petrofabric that may result in a strong remanence anisotropy. Magnetic anisotropy can have particularly disastrous consequences for paleointensity experiments if the anisotropy is unrecognized and if its effects remain uncorrected. Here we examine the magnetic anisotropy of an anorthosite sample with a well-developed magmatic foliation. The effect of the sample's remanence fabric on paleointensity determinations is significant: paleointensities estimated by the method of Thellier and Thellier range from 17 to 55 muT for specimens magnetized in a field of 25 muT. We describe a technique based on the remanence anisotropy tensor to correct paleointensity estimates for the effects of magnetic fabric and use it to estimate a paleointensity for the Stillwater Complex (MT, USA) of similar to 32 muT (adjusted for the effects of slow cooling). (C) 2000 Elsevier Science B.V. All rights reserved.

1998
Gee, J, Kent DV.  1998.  Magnetic telechemistry and magmatic segmentation on the southern east Pacific rise. Earth and Planetary Science Letters. 164:379-385.   10.1016/s0012-821x(98)00231-3   AbstractWebsite

Results from axial dredges and a profile inversion of magnetic anomaly data along the axis of the East Pacific Rise (EPR) at 13-23 degrees S provide an estimate of the average degree of fractionation for the extrusive layer at this ultrafast-spreading (similar to 145 mm/yr full rate) ridge. We find a high correlation (R = 0.81) between dredge mean FeO* (total iron as FeO) and natural remanence for 34 axial dredges with multiple samples having coincident geochemical and magnetic data. We attribute this good correlation to detailed sampling spanning the full range of cooling-related magnetization changes within a flow and to the young age (0-6 ka) of these axial samples, which effectively minimizes time-dependent magnetization changes due to geomagnetic intensity or alteration. A composite axial magnetic anomaly profile shows large amplitude (up to 400 nT) fluctuations with wavelengths of 50-200 km, which theoretical considerations suggest can reliably be related to the magnetization directly beneath the ship. For much of the southern EPR, seismic data provide independent limits on the axial thickness (259 +/- 55 m) and the pattern of off-axis thickening of the extrusive magnetic source layer. These data also provide evidence for an axial magma lens that effectively eliminates anomaly contributions from deeper magnetic sources. Inversion of the axial magnetic anomaly data utilizing these geophysical constraints yields a magnetization solution which, through use of the regression relating FeO* and natural remanence, may be related to the average degree of differentiation of the extrusive source layer. The magnetic data reveal a pattern of magmatic segmentation that closely parallels the tectonic segmentation of the ridge, suggesting that magma supply may be an important control on the average degree of differentiation of the extrusive layer. (C) 1998 Elsevier Science B.V. All rights reserved.

1992
Klootwijk, CT, Gee JS, Peirce JW, Smith GM, McFadden PL.  1992.  An Early India-Asia Contact - Paleomagnetic Constraints from Ninetyeast Ridge, ODP Leg 121. Geology. 20:395-398.   10.1130/0091-7613(1992)020<0395:aeiacp>2.3.co;2   AbstractWebsite

New paleomagnetic results from sedimentary rock and basement of the Ninetyeast Ridge (Ocean Drilling Program Leg 121, Sites 756-758) detail the northward movement of the Indian plate for the past 80 m.y. Analysis of the combined paleolatitude-age profile indicates a distinct reduction in India's northward movement rate at 55+ Ma, interpreted as completion of suturing of Greater India and Asia. India's northward motion slowed from 18-19.5 cm/yr to 4.5 cm/yr for the location of Site 758. Comparison of this profile with paleomagnetic data from the wider Himalayan region indicates that initial contact between northwestern Greater India and southern Asia was already established by Cretaceous-Tertiary time. This supports a possible causal link between the India-Asia convergence and the Deccan Traps extrusion.