Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Horst, AJ, Varga RJ, Gee JS, Karson JA.  2014.  Diverse magma flow directions during construction of sheeted dike complexes at fast- to superfast-spreading centers. Earth and Planetary Science Letters. 408:119-131.   10.1016/j.epsl.2014.09.022   AbstractWebsite

Dike intrusion is a fundamental process during upper oceanic crustal accretion at fast- to superfast-spreading ridges. Based on the distribution of magma along fast-spreading centers inferred from marine geophysical data, models predict systematic steep flow at magmatically robust segment centers and shallow magma flow toward distal segment ends. Anisotropy of magnetic susceptibility (AMS) fabrics from 48 fully-oriented block samples of dikes from upper oceanic crust exposed at Hess Deep Rift and Pito Deep Rift reveal a wide range of magma flow directions that are not consistent with such simple magma supply models. The AMS is interpreted to arise from distribution anisotropy of titanomagnetite crystals based on weak shape-preferred orientation of opaque oxide and plagioclase crystals generally parallel to AMS maximum eigenvectors. Most dike samples show normal AMS fabrics with maximum eigenvector directions ranging from subvertical to subhorizontal. The distributions of inferred magma flow lineations from maximum eigenvectors show no preferred flow pattern, even after structural correction. We use a Kolmogorov Smirnov test (KS-test) to show that the distribution of bootstrapped flow lineation rakes from Pito Deep are not statistically distinct from Hess Deep, and neither are distinguishable from Oman and Troodos Ophiolite AMS data. Magma flow directions in sheeted dikes from these two seafloor escarpments also do not correlate with available geochemistry in any systematic way as previously predicted. These results indicate distinct compositional sources feed melt that is injected into dikes at fast- to superfast-spreading ridges with no preference for subhorizontal or subvertical magma flow. Collectively, results imply ephemeral melt lenses at different along-axis locations within the continuous axial magma chamber and either direct injection or intermingling of melt from other deeper ridge-centered or off-axis sources. (C) 2014 Elsevier B.V. All rights reserved.

2000
Dick, HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu YL, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm HU, Yoshinobu A.  2000.  A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters. 179:31-51.   10.1016/s0012-821x(00)00102-3   AbstractWebsite

Ocean Drilling Program Leg 176 deepened Hole 735B in gabbroic lower ocean crust by 1 km to 1.5 km. The section has the physical properties of seismic layer 3, and a total magnetization sufficient by itself to account for the overlying lineated sea-sur face magnetic anomaly. The rocks from Hole 735B are principally olivine gabbro, with evidence for two principal and many secondary intrusive events. There are innumerable late small ferrogabbro intrusions, often associated with shear zones that cross-cut the olivine gabbros. The ferrogabbros dramatically increase upward in the section. Whereas there are many small patches of ferrogabbro representing late iron- and titanium-rich melt trapped intragranularly in olivine gabbro, most late melt was redistributed prior to complete solidification by compaction and deformation. This, rather than in situ upward differentiation of a large magma body, produced the principal igneous stratigraphy, The computed bulk composition of the hole is too evolved to mass balance mid-ocean ridge basalt back to a primary magma, and there must be a significant mass of missing primitive cumulates. These could lie either below the hole or out of the section. Possibly the gabbros were emplaced by along-axis intrusion of moderately differentiated melts into the near-transform environment. Alteration occurred in three stages. High-temperature granulite- to amphibolite-facies alteration is most important. coinciding with brittle-ductile deformation beneath the ridge. Minor greenschist-facies alteration occurred under largely static conditions, likely during block uplift at the ridge transform intersection. Late post-uplift low-temperature alteration produced locally abundant smectite, often in previously unaltered areas. The most important features of the high- and low-temperature alteration are their respective associations with ductile and cataclastic deformation, and an overall decrease downhole with hydrothermal alteration generally less than or equal to 5% in the bottom kilometer. Hole 735B provides evidence for a strongly heterogeneous lower ocean crust, and for;he inherent Interplay of deformation. alteration and igneous processes at slow-spreading ridges. It is strikingly different from gabbros sampled from fast-spreading ridges and at most well-described ophiolite complexes. We attribute this to the remarkable diversity of tectonic environments where crustal accretion occurs in the oceans and to the low probability of a section of old slow-spread crust found near a major large-offset transform being emplaced on-land compared to sections of young crust from small ocean basins. (C) 20()() Elsevier Science B.V. All rights reserved.

1999
Varga, RJ, Gee JS, Bettison-Varga L, Anderson RS, Johnson CL.  1999.  Early establishment of seafloor hydrothermal systems during structural extension: paleomagnetic evidence from the Troodos ophiolite, Cyprus. Earth and Planetary Science Letters. 171:221-235.   10.1016/s0012-821x(99)00147-8   AbstractWebsite

Paleomagnetic data from the Troodos ophiolite are used to help constrain models for the relationship between extensional normal faulting and hydrothermal alteration related to production of large-tonnage sulfide deposits at oceanic ridges. We have sampled dikes from the Troodos sheeted complex that have been subjected to variable hydrothermal alteration, from greenschist alteration typical of the low water/rock mass ratio interactions outside of hydrothermal upflow zones as well as from severely recrystallized rocks (epidosites) altered within high water/rock mass ratio hydrothermal upflow zones in the root zones beneath large sulfide ore deposits. These dikes are moderately to highly tilted from their initial near-vertical orientations due to rotations in the hangingwalls of approximately dike-parallel, oceanic normal faults. Comparison of characteristic remanence directions from these dikes with the Late Cretaceous Troodos reference direction, therefore, allows a tilt test to determine whether remanent magnetizations were acquired prior to or subsequent to tilting. Remanence directions for both greenschist and epidosite dikes show similar magnitudes of tilting due to rotational normal faulting and restore to the Late Cretaceous Troodos reference direction upon restoration of dikes to near-vertical positions about a NNW-trending, horizontal axis. These data, along with field observations of focused alteration along normal faults, suggest that epidosite alteration occurred during the early stages of extensional tilting and prior to significant rotation. This sequence of events is similar to that observed for creation of large-tonnage sulfide bodies at intermediate to slow spreading centers which form soon after cessation of magmatism and during the early stages of structural extension. We suggest that the dike-parallel normal faults were initiated as extensional fractures during this early stage of crustal extension, thus providing the necessary permeability for focused fluid flow, and that later slip along these structures during rotational-planar normal faulting caused reduction in permeability due to gouge formation. (C) 1999 Elsevier Science B.V. All rights reserved.