Publications

Export 34 results:
Sort by: Author Title [ Type  (Asc)] Year
Book Chapter
Gee, JS, Kent DV.  2007.  Source of oceanic magnetic anomalies and the geomagnetic polarity timesale. Treatise on geophysics. 5( Kono M, Schubert G, Eds.).:455-507., Amsterdam ; Boston: Elsevier Abstract
n/a
Journal Article
Gee, J, Kent DV.  1999.  Calibration of magnetic granulometric trends in oceanic basalts. Earth and Planetary Science Letters. 170:377-390.   10.1016/s0012-821x(99)00125-9   AbstractWebsite

The validity of magnetic granulometric estimates relies heavily on the ability to distinguish ultrafine particles from coarser grains. For example, populations with dominantly superparamagnetic (SP) or multidomain (MD) grains both are characterized by low remanence and coercivity, and distinguishing these endmembers may provide valuable clues to the origin of magnetization in the intervening stable single domain (SD) size range. The natural grain size variations associated with variable cooling rates in submarine lavas provide a rare opportunity for examining progressive changes in average magnetic grain size, from SP-SD mixtures in submarine basaltic glass to SD-MD mixtures in flow interiors. Based on microanalysis and rock magnetic measurements on pillow basalt samples dredged from the flanks of the Mid-Atlantic Ridge (ages <1 Ma to 70 Ma), a model of preferential dissolution with time of the finest-grained titanomagnetites has recently been suggested as the major process contributing to long-term temporal changes in remanent intensity of mid-ocean ridge basalts. We evaluated the local and long-term temporal trends in effective magnetic grain size predicted by this model using hysteresis data from a large number of submarine basalt samples which span a range of apes from similar to 0 to similar to 122 Ma. Specimens were systematically taken along transects perpendicular to the chilled margin of each sample. The large number of data (similar to 750 loops) and the inferred progressive change in grain size approaching the chilled margin allow recognition of mixing trends between MD and SD grains and between SD and SP grains on a Day-plot. These trends in hysteresis parameters are crucial to resolving the inherent, but frequently overlooked, ambiguity in inferring grain size from hysteresis parameters. We illustrate that two additional rock magnetic tests (warming of a low-temperature isothermal remanence and hysteresis loop shapes) often used to address these ambiguities are inconclusive, requiring some independent knowledge of whether SP or MD grains are likely to be present. Even with a considerably larger data set the substantial intrasample variability in oceanic basalts precludes recognition of any systematic trend in magnetic grain size with age. (C) 1999 Elsevier Science B.V. All rights reserved.

Johnson, PH, Kent DV, Tivey MA, Gee JS, Largon RL, Embley RW.  1997.  Conference on the magnetization of the oceanic crust steers future research. Eos Trans. AGU. 78:199-202.: AGU   10.1029/97eo00133   AbstractWebsite

Because marine magnetic anomalies arise from the combination of seafloor spreading and geomagnetic polarity reversals, they delineate a history of global plate motions and geomagnetic field behavior. Thirty years ago, interpretation of sea surface magnetometer profiles led to the plate tectonics revolution. Recent developments in high resolution magnetic studies are similarly changing our view of the structure and evolution of oceanic crust and beginning to answer basic questions concerning geomagnetic field behavior.In response to these developments, the Conference on the Magnetization of Oceanic Crust was held September 21–24,1996, on Orcas Island in Washington State. Forty-seven scientists representing 20 institutions in seven countries attended the conference, which was funded by the National Science Foundation, the Ridge Interdisciplinary Global Experiment (RIDGE), and the United States Science Advisory Committee (USSAC).

Klootwijk, CT, Gee J, Smith GM, Pierce JW.  1991.  Constraints on the India-Asia convergence; paleomagnetic results from Ninetyeast Ridge. Proceedings of the Ocean Drilling Program, Scientific Results. 121:777-884.   10.2973/odp.proc.sr.121.121.1991   Abstract

This study details the Late Cretaceous and Tertiary northward movement of the Indian plate. Breaks in India's northward movement rate are identified, dated, and correlated with the evolution of the India-Asia convergence. Paleolatitudinal constraints on the origin of Ninetyeast Ridge are discussed, and limited magnetostratigraphic detail is provided.Nearly 1500 sediment and basement samples from Sites 756, 757, and 758 on Ninetyeast Ridge were studied through detailed alternating field and thermal demagnetization. Primary and various secondary magnetization components were identified. Breakpoint intervalsintheprimarypaleolatitudepatternforcommon-Site758wereidentified at2.7,6.7,18.5,about53,63.5-67,and68-74.5 Ma. Only the breakpoint interval at about 53 Ma reliably reflects a reduction in India's northward movement rate. The onset of this probably gradual slowdown was dated at 55 Ma (minimal age) based on the intersection of weighted linear regression lines. At the locationofcommon-Site758,northwardmovementslowedfrom 18-19.5cm/yr(fromatleast65to55Ma)to4.5cm/yr(from55 to at least 20 Ma). Reanalysis of earlier DSDP/ODP paleolatitude data from the Indian plate gives a comparable date (53 Ma) for this reduction in northward velocity.Comparison of our Ninetyeast Ridge data and Himalayan paleomagnetic data indicates that the initial contact of Greater India and Asia mayhave already been established by Cretaceous/Tertiary boundary time. The geological record of the convergence zone and the Indian plate supports the notion that the Deccan Traps extrusion may have resulted from the ensuing deformation of the Indian plate. W e interpret the breakpoint at 55+ Ma to reflect completion of the eastward progressive India-Asia suturing process.Neogene phases in the evolution of the convergence zone were correlated with significant changes in the susceptibility, NRM intensity, and lithostratigraphic profile of Site 758.These changes are interpreted to reflect and postdate tectonic phases in the evolutionofthewiderHimalayanandsouthernTibetanregion.Thechangesweredatedandinterpretedasfollows: 17.5Ma,initial uplift of the Higher Himalaya following initiation of intercontinental underthrusting; 10-10.4 Ma, increased uplift and onset of Middle Siwaliks sedimentation; 8.8 Ma, probable reduction in influx corresponding with the Nagri Formation to Dhok Pathan Formation changeover; 6.5 Ma, major tectonic phase evident throughout the wider Himalayan region and northern Indian Ocean; 5.1-5.4 Ma, onset of oroclinal bending of the Himalayan Arc,of extensional tectonism in southern Tibet, and of Upper Siwalik sedimentation; 2.5-2.7 and 1.9 Ma, major phases of uplift of the Himalayan and Tibetan region culminating in the present-day high relief.The basal ash sequence and upper flow sequence of Site 758 and the basal ash sequence of Site 757 indicate paleolatitudes at about 50°S. These support a Kerguelen hot spot origin for Ninetyeast Ridge. Consistently aberrant inclinations in the basalt sequence ofSite757mayberelatedtoasouthwardridgejumpataboutthetime(58Ma)thatthesebasaltswereerupted.Thebasalt sequence of Site 756 indicates a lower paleolatitude (about 43°S), as do parts of the basalt sequence of Site 758 which also have reversed polarity overprints. The low paleolatitudes for Site 756 may be explained by late-stage volcanism north of the Kerguelen hot spot or the influence of the Amsterdam-St. Paul hot spot.

Bowles, J, Gee JS, Kent DV, Bergmanis E, Sinton J.  2005.  Cooling rate effects on paleointensity estimates in submarine basaltic glass and implications for dating young flows. Geochemistry Geophysics Geosystems. 6   10.1029/2004gc000900   AbstractWebsite

Cooling rate effects on the intensity of thermoremanent magnetization (TRM) have been well documented in ceramics. In that case, laboratory cooling is generally more rapid than the initial cooling, leading to an overestimate of the paleofield by 5-10% in Thellier-type paleointensity experiments. The reverse scenario, however, has never been tested. We examine the effects of cooling rate on paleointensity estimates from rapidly quenched submarine basaltic glass (SBG) samples from 13 sites at 17 degrees 30'-18 degrees 30'S on the East Pacific Rise. Absolute cooling rates determined by relaxation geospeedometry at five of these sites range from similar to 10 to similar to 330 degrees C min(-1) at the glass transition (similar to 650 degrees C). Over the dominant range of remanence blocking temperatures (similar to 200-400 degrees C), the natural cooling rates are approximately equal to or slightly slower than the laboratory cooling rates during the Thellier experiment. These results suggest that while the cooling rate effect might introduce some within-site scatter, it should not result in a systematic bias in paleointensity from SBG. Paleointensity estimates from the 15 sites range from similar to 29 to 59 mu T, with an average standard error of similar to 1 mu T. Comparison with models of geomagnetic field intensity variations at the site indicate the youngest group of samples is very recent (indistinguishable from present-day) and the oldest is at least 500, and probably several thousand, years old. These age estimates are consistent with available radiometric ages and geologic observations.

Pospichal, JJ, Dehn J, Driscoll N, van Eijden AJM, Farrell J, Fourtanier E, Gamson PD, Gee J, Janecek T, Jenkins GD, Klootwijk CT, Nomura R, Owen RM, Rea DK, Resiwati P, Smit J, Smith GM.  1991.  Cretaceous-Paleogene biomagnetostratigraphy of sites 752-755, Broken Ridge; a synthesis. Proceedings of the Ocean Drilling Program, Scientific Results. 121:721-742.   10.2973/odp.proc.sr.121.181.1991   Abstract

Broken Ridge, in the eastern Indian Ocean, is a shallow-water volcanic platform which formed during the Early to middle Cretaceous at which time it comprised the northern portion of the Kerguelen-Heard Plateau. Rifting during the middle Eocene and subsequent seafloor spreading has moved Broken Ridge about 20°N to its present location. The sedimentary section of Broken Ridge includes Turonian-lower Eocene limestone and chalk with volcanic ash, an interval of detrital sands and gravels associated with middle Eocene rifting and uplift, and a middle-late Oligocene unconformity overlain by a thin section of Neogene-Holocene pelagic calcareous ooze. This paper summarizes the available post-cruise biostratigraphic and magnetostratigraphic data for the Cretaceous- Paleogene section on Broken Ridge. The synthesis of this information permits a more precise interpretation of the timing of events in the history of Broken Ridge, in particular the timing and duration of the middle Eocene rifting event. Paleontologic data support rapid flexural uplift of Broken Ridge in response to mechanical rather than thermal forces. Other highlights of the section include a complete Cretaceous/Tertiary boundary and an opportunity for first-order correlation of Paleogene diatom stratigraphy with that of the calcareous groups.

Varga, RJ, Horst AJ, Gee JS, Karson JA.  2008.  Direct evidence from anisotropy of magnetic susceptibility for lateral melt migration at superfast spreading centers. Geochemistry Geophysics Geosystems. 9   10.1029/2008gc002075   AbstractWebsite

Rare, fault-bounded escarpments expose natural cross sections of ocean crust in several areas and provide an unparalleled opportunity to study the end products of tectonic and magmatic processes that operated at depth beneath oceanic spreading centers. We mapped the geologic structure of ocean crust produced at the East Pacific Rise ( EPR) and now exposed along steep cliffs of the Pito Deep Rift near the northern edge of the Easter microplate. The upper oceanic crust in this area is typified by basaltic lavas underlain by a sheeted dike complex comprising northeast striking, moderately to steeply southeast dipping dikes. Paleomagnetic remanence of oriented blocks of dikes collected with both Alvin and Jason II indicate clockwise rotation of similar to 61 degrees related to rotation of the microplate indicating structural coupling between the microplate and crust of the Nazca Plate to the north. The consistent southeast dip of dikes formed as the result of tilting at the EPR shortly after their injection. Anisotropy of magnetic susceptibility of dikes provides well-defined magmatic flow directions that are dominantly dike-parallel and shallowly plunging. Corrected to their original EPR orientation, magma flow is interpreted as near-horizontal and parallel to the ridge axis. These data provide the first direct evidence from sheeted dikes in ocean crust for along-axis magma transport. These results also suggest that lateral transport in dikes is important even at fast spreading ridges where a laterally continuous subaxial magma chamber is present.

Horst, AJ, Varga RJ, Gee JS, Karson JA.  2014.  Diverse magma flow directions during construction of sheeted dike complexes at fast- to superfast-spreading centers. Earth and Planetary Science Letters. 408:119-131.   10.1016/j.epsl.2014.09.022   AbstractWebsite

Dike intrusion is a fundamental process during upper oceanic crustal accretion at fast- to superfast-spreading ridges. Based on the distribution of magma along fast-spreading centers inferred from marine geophysical data, models predict systematic steep flow at magmatically robust segment centers and shallow magma flow toward distal segment ends. Anisotropy of magnetic susceptibility (AMS) fabrics from 48 fully-oriented block samples of dikes from upper oceanic crust exposed at Hess Deep Rift and Pito Deep Rift reveal a wide range of magma flow directions that are not consistent with such simple magma supply models. The AMS is interpreted to arise from distribution anisotropy of titanomagnetite crystals based on weak shape-preferred orientation of opaque oxide and plagioclase crystals generally parallel to AMS maximum eigenvectors. Most dike samples show normal AMS fabrics with maximum eigenvector directions ranging from subvertical to subhorizontal. The distributions of inferred magma flow lineations from maximum eigenvectors show no preferred flow pattern, even after structural correction. We use a Kolmogorov Smirnov test (KS-test) to show that the distribution of bootstrapped flow lineation rakes from Pito Deep are not statistically distinct from Hess Deep, and neither are distinguishable from Oman and Troodos Ophiolite AMS data. Magma flow directions in sheeted dikes from these two seafloor escarpments also do not correlate with available geochemistry in any systematic way as previously predicted. These results indicate distinct compositional sources feed melt that is injected into dikes at fast- to superfast-spreading ridges with no preference for subhorizontal or subvertical magma flow. Collectively, results imply ephemeral melt lenses at different along-axis locations within the continuous axial magma chamber and either direct injection or intermingling of melt from other deeper ridge-centered or off-axis sources. (C) 2014 Elsevier B.V. All rights reserved.

Blackman, DK, Ildefonse B, John BE, Ohara Y, Miller DJ, Abe N, Abratis M, Andal ES, Andreani M, Awaji S, Beard JS, Brunelli D, Charney AB, Christie DM, Collins J, Delacour AG, Delius H, Drouin M, Einaudi F, Escartin J, Frost BR, Fruh-Green G, Fryer PB, Gee JS, Godard M, Grimes CB, Halfpenny A, Hansen HE, Harris AC, Tamura A, Hayman NW, Hellebrand E, Hirose T, Hirth JG, Ishimaru S, Johnson KTM, Karner GD, Linek M, MacLeod CJ, Maeda J, Mason OU, McCaig AM, Michibayashi K, Morris A, Nakagawa T, Nozaka T, Rosner M, Searle RC, Suhr G, Tominaga M, von der Handt A, Yamasaki T, Zhao X.  2011.  Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30 degrees N. Journal of Geophysical Research-Solid Earth. 116   10.1029/2010jb007931   AbstractWebsite

Expeditions 304 and 305 of the Integrated Ocean Drilling Program cored and logged a 1.4 km section of the domal core of Atlantis Massif. Postdrilling research results summarized here constrain the structure and lithology of the Central Dome of this oceanic core complex. The dominantly gabbroic sequence recovered contrasts with predrilling predictions; application of the ground truth in subsequent geophysical processing has produced self-consistent models for the Central Dome. The presence of many thin interfingered petrologic units indicates that the intrusions forming the domal core were emplaced over a minimum of 100-220 kyr, and not as a single magma pulse. Isotopic and mineralogical alteration is intense in the upper 100 m but decreases in intensity with depth. Below 800 m, alteration is restricted to narrow zones surrounding faults, veins, igneous contacts, and to an interval of locally intense serpentinization in olivine-rich troctolite. Hydration of the lithosphere occurred over the complete range of temperature conditions from granulite to zeolite facies, but was predominantly in the amphibolite and greenschist range. Deformation of the sequence was remarkably localized, despite paleomagnetic indications that the dome has undergone at least 45 degrees rotation, presumably during unroofing via detachment faulting. Both the deformation pattern and the lithology contrast with what is known from seafloor studies on the adjacent Southern Ridge of the massif. There, the detachment capping the domal core deformed a 100 m thick zone and serpentinized peridotite comprises similar to 70% of recovered samples. We develop a working model of the evolution of Atlantis Massif over the past 2 Myr, outlining several stages that could explain the observed similarities and differences between the Central Dome and the Southern Ridge.

Klootwijk, CT, Gee JS, Peirce JW, Smith GM, McFadden PL.  1992.  An Early India-Asia Contact - Paleomagnetic Constraints from Ninetyeast Ridge, ODP Leg 121. Geology. 20:395-398.   10.1130/0091-7613(1992)020<0395:aeiacp>2.3.co;2   AbstractWebsite

New paleomagnetic results from sedimentary rock and basement of the Ninetyeast Ridge (Ocean Drilling Program Leg 121, Sites 756-758) detail the northward movement of the Indian plate for the past 80 m.y. Analysis of the combined paleolatitude-age profile indicates a distinct reduction in India's northward movement rate at 55+ Ma, interpreted as completion of suturing of Greater India and Asia. India's northward motion slowed from 18-19.5 cm/yr to 4.5 cm/yr for the location of Site 758. Comparison of this profile with paleomagnetic data from the wider Himalayan region indicates that initial contact between northwestern Greater India and southern Asia was already established by Cretaceous-Tertiary time. This supports a possible causal link between the India-Asia convergence and the Deccan Traps extrusion.

Staudigel, H, Tauxe L, Gee JS, Bogaard P, Haspels J, Kale G, Leenders A, Meijer P, Swaak B, Tuin M, Van Soest MC, Verdurmen EAT, Zevenhuizen A.  1999.  Geochemistry and Intrusive Directions In Sheeted Dikes in the Troodos Ophiolite: Implications for Mid-Ocean Ridge Spreading Centers. Geochemistry Geophysics Geosystems. 1 AbstractWebsite

Sheeted dikes at mid-ocean ridge volcanoes represent the link between deep magma production and storage processes and shallow processes such as volcanism and hydrothermal activity. As such, they are crucial for the interpretation of many observations at mid-ocean ridges or other volcanoes with pronounced rift zones, including topography, hydrothermal systems, petrology, and geochemistry. We carried out a structural, magnetic, and chemical investigation of a 4 x 10 km sheeted dike section in the Troodos ophiolite, Cyprus. On the basis of major and trace element geochemistry, we distinguish dikes that may be correlated with the basal high-Ti series (HTS) lavas from those of the overlying low-Ti series (LTS) lavas. All dikes studied are nearly parallel to each other, with vertical or steeply dipping planes whose strike likely indicates the orientation of the spreading center. Anisotropy of magnetic susceptibility measurements suggests that the HTS and LTS dikes intrude in fundamentally different ways. HTS dikes reflect the intrusive behavior of dikes in the vicinity of a magma supply system and define ridge parallel intrusive sheets that radiate out from the magma chamber. LTS dikes show a bimodal, orthogonal set of intrusive directions, one shallow and one near vertical. Near-lateral propagating dikes provide a means for delivery of magma into distant portions of a rift system, and near-vertical dike propagation directions are probably associated with feeder dikes to down-rift surface flows. Our study suggests that the types of dike intrusive behavior in the Troodos ophiolite may also be typical for "normal" mid-ocean ridges or other major shield volcanoes with well-developed rift zones.

Blackman, DK, Karson JA, Kelley DS, Cann JR, Fruh-Green GL, Gee JS, Hurst SD, John BE, Morgan J, Nooner SL, Ross DK, Schroeder TJ, Williams EA.  2002.  Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30 degrees N): Implications for the evolution of an ultramafic oceanic core complex. Marine Geophysical Research. 23:443-469.   10.1023/b:mari.0000018232.14085.75   AbstractWebsite

The oceanic core complex comprising Atlantis Massif was formed within the past 1.5-2 Myr at the intersection of the Mid-Atlantic Ridge, 30degrees N, and the Atlantis Transform Fault. The corrugated, striated central dome prominently displays morphologic and geophysical characteristics representative of an ultramafic core complex exposed via long-lived detachment faulting. Sparse volcanic features on the massif's central dome indicate that minor volcanics have penetrated the inferred footwall, which geophysical data indicates is composed predominantly of variably serpentinized peridotite. In contrast, the hanging wall to the east of the central dome is comprised of volcanic rock. The southern part of the massif has experienced the greatest uplift, shoaling to less than 700 m below sea level, and the coarsely striated surface there extends eastward to the top of the median valley wall. Steep landslide embayments along the south face of the massif expose cross sections through the core complex. Almost all of the submersible and dredge samples from this area are deformed, altered peridotite and lesser gabbro. Intense serpentinization within the south wall has likely contributed to the uplift of the southern ridge and promoted the development of the Lost City Hydrothermal Field near the summit. Differences in the distribution with depth of brittle deformation observed in microstructural analyses of outcrop samples suggest that low-temperature strain, such as would be associated with a major detachment fault, is concentrated within several tens of meters of the domal surface. However, submersible and camera imagery show that deformation is widespread along the southern face of the massif, indicating that a series of faults, rather than a single detachment, accommodated the uplift and evolution of this oceanic core complex.

Kent, DV, Gee J.  1994.  Grain Size-Dependent Alteration and the Magnetization of Oceanic Basalts. Science. 265:1561-1563.   10.1126/science.265.5178.1561   AbstractWebsite

Unblocking temperatures of natural remanent magnetization were found to extend well above the dominant Curie points in samples of oceanic basalts from the axis of the East Pacific Rise. This phenomenon is attributed to the natural presence in the basalts of three related magnetic phases: an abundant fine-grained and preferentially oxidized titanomagnetite that carries most of the natural remanent magnetism, a few coarser and less oxidized grains of titanomagnetite that account for most of the high-field magnetic properties, and a small contribution to both the natural remanent magnetism and high-field magnetic properties from magnetite that may be due to the disproportionation of the oxidized titanomagnetite under sea-floor conditions. This model is consistent with evidence from the Central Anomaly magnetic high that the original magnetization acquired by oceanic basalts upon cooling is rapidly altered and accounts for the lack of sensitivity of bulk rock magnetic parameters to the degree of alteration of the remanence carrier in oceanic basalts.

Koppers, AAP, Yamazaki T, Geldmacher J, Gee JS, Pressling N, Hoshi H, Anderson L, Beier C, Buchs DM, Chen LH, Cohen BE, Deschamps F, Dorais MJ, Ebuna D, Ehmann S, Fitton JG, Fulton PM, Ganbat E, Hamelin C, Hanyu T, Kalnins L, Kell J, Machida S, Mahoney JJ, Moriya K, Nichols ARL, Rausch S, Sano SI, Sylvan JB, Williams R.  2012.  Limited latitudinal mantle plume motion for the Louisville hotspot. Nature Geoscience. 5:911-917.   10.1038/ngeo1638   AbstractWebsite

Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave narrow trails of volcanic seamounts as a tectonic plate moves over their location. These seamount trails are excellent recorders of Earth's deep processes and allow us to untangle ancient mantle plume motions. During ascent it is likely that mantle plumes are pushed away from their vertical upwelling trajectories by mantle convection forces. It has been proposed that a large-scale lateral displacement, termed the mantle wind, existed in the Pacific between about 80 and 50 million years ago, and shifted the Hawaiian mantle plume southwards by about 15 degrees of latitude. Here we use Ar-40/Ar-39 age dating and palaeomagnetic inclination data from four seamounts associated with the Louisville hotspot in the South Pacific Ocean to show that this hotspot has been relatively stable in terms of its location. Specifically, the Louisville hotspot-the southern hemisphere counterpart of Hawai'i-has remained within 3-5 degrees of its present-day latitude of about 51 degrees S between 70 and 50 million years ago. Although we cannot exclude a more significant southward motion before that time, we suggest that the Louisville and Hawaiian hotspots are moving independently, and not as part of a large-scale mantle wind in the Pacific.

Dick, HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu YL, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm HU, Yoshinobu A.  2000.  A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters. 179:31-51.   10.1016/s0012-821x(00)00102-3   AbstractWebsite

Ocean Drilling Program Leg 176 deepened Hole 735B in gabbroic lower ocean crust by 1 km to 1.5 km. The section has the physical properties of seismic layer 3, and a total magnetization sufficient by itself to account for the overlying lineated sea-sur face magnetic anomaly. The rocks from Hole 735B are principally olivine gabbro, with evidence for two principal and many secondary intrusive events. There are innumerable late small ferrogabbro intrusions, often associated with shear zones that cross-cut the olivine gabbros. The ferrogabbros dramatically increase upward in the section. Whereas there are many small patches of ferrogabbro representing late iron- and titanium-rich melt trapped intragranularly in olivine gabbro, most late melt was redistributed prior to complete solidification by compaction and deformation. This, rather than in situ upward differentiation of a large magma body, produced the principal igneous stratigraphy, The computed bulk composition of the hole is too evolved to mass balance mid-ocean ridge basalt back to a primary magma, and there must be a significant mass of missing primitive cumulates. These could lie either below the hole or out of the section. Possibly the gabbros were emplaced by along-axis intrusion of moderately differentiated melts into the near-transform environment. Alteration occurred in three stages. High-temperature granulite- to amphibolite-facies alteration is most important. coinciding with brittle-ductile deformation beneath the ridge. Minor greenschist-facies alteration occurred under largely static conditions, likely during block uplift at the ridge transform intersection. Late post-uplift low-temperature alteration produced locally abundant smectite, often in previously unaltered areas. The most important features of the high- and low-temperature alteration are their respective associations with ductile and cataclastic deformation, and an overall decrease downhole with hydrothermal alteration generally less than or equal to 5% in the bottom kilometer. Hole 735B provides evidence for a strongly heterogeneous lower ocean crust, and for;he inherent Interplay of deformation. alteration and igneous processes at slow-spreading ridges. It is strikingly different from gabbros sampled from fast-spreading ridges and at most well-described ophiolite complexes. We attribute this to the remarkable diversity of tectonic environments where crustal accretion occurs in the oceans and to the low probability of a section of old slow-spread crust found near a major large-offset transform being emplaced on-land compared to sections of young crust from small ocean basins. (C) 20()() Elsevier Science B.V. All rights reserved.

Vanderkluysen, L, Mahoney JJ, Koppers AAP, Beier C, Regelous M, Gee JS, Lonsdale PF.  2014.  Louisville Seamount Chain: Petrogenetic processes and geochemical evolution of the mantle source. Geochemistry Geophysics Geosystems. 15:2380-2400.   10.1002/2014gc005288   AbstractWebsite

The Louisville Seamount Chain is a similar to 4300 km long chain of submarine volcanoes in the southwestern Pacific that spans an age range comparable to that of the Hawaiian-Emperor chain and is commonly thought to represent a hot spot track. Dredging in 2006 recovered igneous rocks from 33 stations on 22 seamounts covering some 49 Myr of the chain's history. All samples are alkalic, similar to previous dredge and drill samples, providing no evidence for a Hawaiian-type tholeiitic shield-volcano stage. Major and trace element variations appear to be predominantly controlled by small but variable extents of fractional crystallization and by partial melting. Isotopic values define only a narrow range, in agreement with a surprising long-term source homogeneity-relative to the length scale of melting-and overlap with proposed fields for the "C" and "FOZO" mantle end-members. Trace element and isotope geochemistry is uncorrelated with either seamount age or lithospheric thickness at the time of volcanism, except for a small number of lavas from the westernmost Louisville Seamounts built on young (<20 Ma old) oceanic crust. The Louisville hot spot has been postulated to be the source of the similar to 120 Ma Ontong Java Plateau, but the Louisville isotopic signature cannot have evolved from a source with isotopic ratios like those measured for Ontong Java Plateau basalts. On the other hand, this signature can be correlated with that of samples dredged from the Danger Islands Troughs of the Manihiki Plateau, which has been interpreted as a rifted fragment of the "Greater" Ontong Java Plateau.

Kent, DV, Gee J.  1996.  Magnetic alteration of zero-age oceanic basalt. Geology. 24:703-706.   10.1130/0091-7613(1996)024<0703:maozao>2.3.co;2   AbstractWebsite

The youngest sampled submarine lava flow, which erupted June 1993 on the Juan de Fuca Ridge, provides the basis for a tight constraint on the initial or zero-age magnetization state of MORE, Detailed profiles of magnetic hysteresis parameters, Curie temperatures, and unblocking temperatures of NRM with respect to the chilled margin of a pillow fragment show evidence of significant oxidation, which preferentially affected the finest grain-size fraction and principal remanence carrier of the titanomagnetite magnetic mineralogy. The oxidation must have occurred during or immediately after initial cooling, implying that MORE is already appreciably magnetically altered before aging. Nevertheless, successful results of Thellier paleointensity experiments on the basalt sample lend support to the idea that crustal magnetization represented by MORE preserves a record of geomagnetic intensity variations that may be reflected in small-scale magnetic anomalies.

Lawrence, RM, Gee JS, Karson JA.  2002.  Magnetic anisotropy of serpentinized peridotites from the MARK area: Implications for the orientation of mesoscopic structures and major fault zones. Journal of Geophysical Research-Solid Earth. 107   10.1029/2000jb000007   AbstractWebsite

[1] Mantle-derived serpentinized peridotites are exposed both along fracture zones and in areas of extreme tectonic extension at slow to intermediate spreading ridges and may constitute a significant volume of the shallow crust in these environments. Here we examine the potential of magnetic remanence data and structural features in serpentinized peridotites from Ocean Drilling Program (ODP) Site 920 (Mid-Atlantic Ridge south of Kane, MARK) to provide insights into the tectonic processes responsible for the exposure of these deep-seated rocks at the seafloor. Paleomagnetic data from 214 samples from Site 920 document a remarkably consistent inclination (36.1degrees +0.8degrees/ -1.4degrees) that is shallower than either the expected geocentric axial dipole inclination (40.7degrees) or present-day inclination (41.9degrees) at the site. We show that the nearly univectorial remanence in these samples is likely to be a partial thermoremanence, possibly augmented by viscous processes at moderate temperatures. These properties were acquired during cooling from the relatively high temperatures (> 350 degreesC) at which serpentinization occurred. The remanence directions therefore provide some information on the latest stages of uplift of the serpentinite massif. However, interpretation of this tectonic history is complicated by the presence of a pronounced magnetic fabric, which presumably resulted in a deflection of the remanence. We estimate the magnitude and direction of this deflection using a relationship between the anisotropy of magnetic susceptibility and remanence anisotropy. The corrected remanent inclinations (mean 39.5degrees) more closely approximates the time-averaged inclination at the site, indicating that the massif experienced little or no resolvable tilt after serpentinization and cooling to 350 degreesC. Accounting for the anisotropy-related deflection of the remanence also allows us to more accurately restore various structural features within the core to their geographic orientation. After this reorientation the dominant mesoscopic foliation in these rocks, defined by the preferred orientation of orthopyroxene and subparallel serpentine veins, has an average orientation that closely parallels the regional-scale fault zones on the western median valley wall.

Gee, J, Kent DV.  1995.  Magnetic Histeresis in Young Midocean Ridge Basalts - Dominant Cubic Anisotropy. Geophysical Research Letters. 22:551-554.   10.1029/95gl00263   AbstractWebsite

Magnetic hysteresis data from young mid-ocean ridge basalts include samples with saturation remanence to saturation magnetization (Mrs/Ms) ratios greater than 0.5, the theoretical limit for an assemblage of single domain grains with uniaxial anisotropy. Under the usual assumption of dominant uniaxial anisotropy, the narrow single domain grain size distribution implied by these high Mrs/Ms values is difficult to reconcile with petrographic and remanence data that suggest the presence of larger multidomain grains. Dominant cubic anisotropy provides a plausible explanation for the high Mrs/Ms ratios, and if generally valid, requires reinterpretation of granulometric and domain state inferences made from hysteresis data.

Smith, GM, Gee J, Klootwijk CT.  1991.  Magnetic petrology of basalts from Ninetyeast Ridge. Proceedings of the Ocean Drilling Program, Scientific Results. 121:525-545.   10.2973/odp.proc.sr.121.154.1991   Abstract

Given the importance of the inversion of seamount magnetic anomalies, particularly to the motion of the Pacific plate, it is important to gain a better understanding of the nature of the magnetic source of these features. Although different in detail, Ninetyeast Ridge is composed of submarine and subaerial igneous rocks that are similar to those found at many seamounts, making it a suitable proxy. We report here on the magnetic petrology of a collection of samples from Ninetyeast Ridge in the Indian Ocean. Our purpose is to determine the relationship between primary petrology, subsequent alteration, and magnetic properties of the recovered rocks. Such information will eventually lead to a more complete understanding of the magnetization of seamounts and presumably improvements in the accuracy of anomaly inversions. Three basement sites were drilled on Ninetyeast Ridge, with recovery of subaerial basalt flows at the first two (Sites 756 and 757) and submarine massive and pillow flows at the final one (Site 758). The three sites were distinctly different. Site 756 was dominated by ilmenite. What titanomagnetite was present had undergone deuteric alteration and secondary hematite was present in many samples. The magnetization was moderate and stable although it yielded a paleolatitude somewhat lower than expected. Site 757 was highly oxidized, presumably while above sea level. It was dominated by primary titanomagnetite, which was deuterically altered. Secondary hematite was common. Magnetization was relatively weak but quite stable. The paleolatitude for all but the lowermost flows was approximately 40° lower than expected. Site 758 was also dominated by primary titanomagnetite. There was relatively little oxidation with most primary titanomagnetite showing no evidence of high-temperature alteration. No secondary hematite was in evidence. This site had the highest magnetization of the three (although somewhat low relative to other seamounts) but was relatively unstable with significant viscous remanence in many samples. Paleolatitude was close to the expected value. It is not possible, at present, to confidently associate these rocks with specific locations in a seamount structure. A possible and highly speculative model would place rocks similar to Site 757 near the top of the edifice, Site 756 lower down but still erupted above sea level, and Site 758 underlying these units, erupted while the seamount was still below sea level.

Gee, J, Kent DV.  1998.  Magnetic telechemistry and magmatic segmentation on the southern east Pacific rise. Earth and Planetary Science Letters. 164:379-385.   10.1016/s0012-821x(98)00231-3   AbstractWebsite

Results from axial dredges and a profile inversion of magnetic anomaly data along the axis of the East Pacific Rise (EPR) at 13-23 degrees S provide an estimate of the average degree of fractionation for the extrusive layer at this ultrafast-spreading (similar to 145 mm/yr full rate) ridge. We find a high correlation (R = 0.81) between dredge mean FeO* (total iron as FeO) and natural remanence for 34 axial dredges with multiple samples having coincident geochemical and magnetic data. We attribute this good correlation to detailed sampling spanning the full range of cooling-related magnetization changes within a flow and to the young age (0-6 ka) of these axial samples, which effectively minimizes time-dependent magnetization changes due to geomagnetic intensity or alteration. A composite axial magnetic anomaly profile shows large amplitude (up to 400 nT) fluctuations with wavelengths of 50-200 km, which theoretical considerations suggest can reliably be related to the magnetization directly beneath the ship. For much of the southern EPR, seismic data provide independent limits on the axial thickness (259 +/- 55 m) and the pattern of off-axis thickening of the extrusive magnetic source layer. These data also provide evidence for an axial magma lens that effectively eliminates anomaly contributions from deeper magnetic sources. Inversion of the axial magnetic anomaly data utilizing these geophysical constraints yields a magnetization solution which, through use of the regression relating FeO* and natural remanence, may be related to the average degree of differentiation of the extrusive source layer. The magnetic data reveal a pattern of magmatic segmentation that closely parallels the tectonic segmentation of the ridge, suggesting that magma supply may be an important control on the average degree of differentiation of the extrusive layer. (C) 1998 Elsevier Science B.V. All rights reserved.

Gee, J, Kent DV.  1997.  Magnetization of axial lavas from the southern East Pacific Rise (14 degrees-23 degrees S): Geochemical controls on magnetic properties. Journal of Geophysical Research-Solid Earth. 102:24873-24886.   10.1029/97jb02544   AbstractWebsite

Although the spatial association of iron-rich lavas and high-amplitude magnetic anomalies is well documented, a causal link between enhanced iron content and high remanent magnetization has been difficult to establish. Here we report magnetic data from approximately 250 samples, with 8-16% FeO* (total iron as FeO), from the southern East Pacific Rise (EPR) that provide strong support for the presumed geochemical dependence of remanent intensity. The limited age range (0-6 ka) of axial lavas from this ultrafast spreading ridge (similar to 150 mm/yr full rate) effectively minimizes variations resulting from time dependent chan or low-temperature alteration. Systematic sampling relative to the chilled margin illustrates that substantial grain size-related variations in magnetic properties occur on a centimeter scale. Both microprobe data and Curie temperatures suggest that the average groundmass titanomagnetite composition in the southern EPR samples is approximately constant (modal modified ulvospinel content = 0.67) over a wide range of lava compositions. Saturation magnetization and saturation remanence are highly correlated with FeO* (R = 0.73 and 0.83, respectively), indicating that more iron-rich lavas have higher abundances of otherwise similar titanomagnetite. We show that there is a good correlation between natural remanent magnetization (NRM) and FeO*, provided that sufficient specimens are used to determine the average NRM of a sample (R = 0.63). Because the range of iron contents in mid-ocean ridge basalts is limited, the best fit slope (4.44 A/m per %FeO* in an ambient field of 0.030 mT) should provide reasonable bounds on the equatorial magnetization of submarine lavas (similar to 10 A/m at 8.5% FeO* and similar to 50 A/m at similar to 16% FeO*). Finally, we demonstrate that along-axis variations in NRM closely parallel geochemical changes along the southern EPR. Where magnetization values deviate significantly from those predicted from the range of measured FeO* contents, these discrepancies may reflect additional unrecognized geochemical variability.

Gee, J, Klootwijk CT, Smith GM.  1991.  Magnetostratigraphy of Paleogene and upper Cretaceous sediments from Broken Ridge, eastern Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results. 121:359-376.   10.2973/odp.proc.sr.121.151.1991   Abstract

Broken Ridge represents a fragment of the oceanic Kerguelen-Heard platform, constructed at high southern latitudes in the middle Cretaceous and rifted apart during the middle Eocene (43-45 Ma). The approximately 1400-m section of prerift sedimentson Broken Ridge preserves a polarity sequence that spans the middle Eocene to Upper Cretaceous (Chrons Cl 8/C20 to C34), including a 500-m continuous sequence from the lower Eocene (C23R) to the Maestrichtian/Campanian boundary (C32R). The polarity record, together with biostratigraphic data, provides a well-constrained time framework for interpreting the history of Broken Ridge. Inclinations in the lower portion of the section are generally 5°-10° shallower than the expected geocentric axial dipole inclination.Comparison of inclination and porosity changes with stratigraphic depth suggests the importance of compaction in generating these shallow inclinations. Changes in the magnetic fabric, reflected in the anisotropy of anhysteretic remanence, provide additional support for this interpretation.

Gee, J, Schneider DA, Kent DV.  1996.  Marine magnetic anomalies as recorders of geomagnetic intensity variations. Earth and Planetary Science Letters. 144:327-335.   10.1016/s0012-821x(96)00184-7   AbstractWebsite

In addition to providing a robust record of past geomagnetic polarity reversals, marine magnetic anomalies often show shorter wavelength variations, which may provide information on geomagnetic intensity variations within intervals of constant polarity. To evaluate this possible geomagnetic signal, we compare sea surface profiles of the Central Anomaly with synthetic profiles based on Brunhes age (0-0.78 Ma) paleointensity records derived from deep sea sediments. The similarity of the synthetic profiles and observed profiles from the ultra-fast spreading southern East Pacific Rise suggests that geomagnetic intensity variations play an important role in the magnetization of the oceanic crust. This interpretation is further supported by systematic variations in the pattern of the Central Anomaly at slower spreading ridges, which are entirely consistent with a progressively smoother record of the sediment-derived paleointensity. If the sedimentary records, as calibrated to available absolute paleointensity data, accurately record variations in dipole intensity over the Brunhes, it follows that much of the Brunhes was characterized by geomagnetic intensities lower than either the mean dipole moment for the past 10 ka or the average for the period from 0.05 to 5.0 Ma. Furthermore, the sediment paleointensity records reflect the significant increase in geomagnetic intensity, from a low of similar to 2 x 10(22) Am-2 near 40 ka to a peak value (11 x 10(22) Am-2) at similar to 3 ka, that has been well documented from absolute paleointensity determinations, We suggest that geomagnetic intensity variations may be the most important cause of the rapid changes in the source layer magnetization near the ridge crest and the resultant Central Anomaly Magnetic High.

Klootwijk, CT, Gee JS, Peirce JW, Smith GM.  1992.  Neogene Evolution of the Himalayan Tibetan Region - Constraints from ODP Site-758, Northern Ninetyeast Ridge - Bearing on Climatic-Change. Palaeogeography Palaeoclimatology Palaeoecology. 95:95-110.   10.1016/0031-0182(92)90167-4   AbstractWebsite

Magnetic susceptibility, remanence and lithostratigraphic profiles for the Neogene-Quaternary sequence at Site 758 (ODP Leg 121) on the northern Ninetyeast Ridge show distinct changes, dated from biostratigraphy and detailed magnetostratigraphy, at 17.5, 10.4-10.0, 8.8, 6.5, 5.4-5.1, 2.7-2.5, 1.9, and 1.2-1.1 Ma. These magnetic and lithologic changes appear to reflect changes in the supply and character of terrigenous material from the Himalayan-Tibetan region resulting from changes in gradient of the Ganges, Brahmaputra and probably the ancient Indus drainage systems. The sedimentary changes can be correlated with changes in uplift-sensitive markers such as the oceanic Sr-87/Sr-86 ratio and monsoonal induced upwelling, but not clearly so with sealevel variations. We interpret these sedimentary changes, therefore, to primarily reflect changes in the tectonic evolution of the Himalayan-Tibetan region. The changes in the distal marine sedimentary record of the northern Ninetyeast Ridge are compared with isotopic control on the timing of Himalayan-Tibetan tectonic phases and magnetostratigraphic control on their reflection in the proximal Siwalik molasse record. This comparison indicates that the distal Ninetyeast Ridge record can be used to detail and to place minimal age constraints on tectonic phases in the wider Himalayan region and on evolution of the proximal molasse sequence, with a time lag determined for the four earliest changes at less than 1 m.y. The changes at 17.5 Ma and 5.4-5.1 Ma can be interpreted in terms of the causative chain: enhanced plate motion double-line arrow pointing right uplift and sedimentation change double-line arrow pointing right climatic change, supporting arguments that the Late Cainozoic global climatic deterioration is driven by uplift of large plateaus such as the Himalayan-Tibetan region and the Western Cordillera.