Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I [J] K L M N O P Q R S T U V W X Y Z   [Show ALL]
Johnson, PH, Kent DV, Tivey MA, Gee JS, Largon RL, Embley RW.  1997.  Conference on the magnetization of the oceanic crust steers future research. Eos Trans. AGU. 78:199-202.: AGU   10.1029/97eo00133   AbstractWebsite

Because marine magnetic anomalies arise from the combination of seafloor spreading and geomagnetic polarity reversals, they delineate a history of global plate motions and geomagnetic field behavior. Thirty years ago, interpretation of sea surface magnetometer profiles led to the plate tectonics revolution. Recent developments in high resolution magnetic studies are similarly changing our view of the structure and evolution of oceanic crust and beginning to answer basic questions concerning geomagnetic field behavior.In response to these developments, the Conference on the Magnetization of Oceanic Crust was held September 21–24,1996, on Orcas Island in Washington State. Forty-seven scientists representing 20 institutions in seven countries attended the conference, which was funded by the National Science Foundation, the Ridge Interdisciplinary Global Experiment (RIDGE), and the United States Science Advisory Committee (USSAC).

Johnson, CL, Wijbrans JR, Constable CG, Gee J, Staudigel H, Tauxe L, Forjaz VH, Salgueiro M.  1998.  Ar-40/Ar-39 ages and paleomagnetism of Sao Miguel lavas, Azores. Earth and Planetary Science Letters. 160:637-649.   10.1016/s0012-821x(98)00117-4   AbstractWebsite

We present new Ar-40/Ar-39 ages and paleomagnetic data for Sao Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. Ar-40/Ar-39 age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K-Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across Sao Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The Ar-40/Ar-39 ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0-0.1 Ma) and up to 0.78 Myr (0-0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78-0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction. (C) 1998 Elsevier Science B.V. All rights reserved.

Juarez, MT, Tauxe L, Gee JS, Pick T.  1998.  The intensity of the Earth's magnetic field over the past 160 million years. Nature. 394:878-881.   10.1038/29746   AbstractWebsite

In contrast to our detailed knowledge of the directional behaviour of the Earth's magnetic field during geological and historical times(1,2), data constraining the past intensity of the field remain relatively scarce. This is mainly due to the difficulty in obtaining reliable palaeointensity measurements, a problem that is intrinsic to the geological materials which record the Earth's magnetic field. Although the palaeointensity database has grown modestly over recent years(3-5), these data are restricted to a few geographical locations and more than one-third of the data record the field over only the past 5 Myr-the most recent database(5) covering the time interval from 5 to 160 Myr contains only about 100 palaeointensity measurements. Here we present 21 new data points from the interval 5-160 Myr obtained from submarine basalt glasses collected from locations throughout the world's oceans. Whereas previous estimates for the average dipole moment were comparable to that of the Earth's present field(6), the new data suggest an average dipole moment of (4.2 +/- 2.3) x 10(22) A m(2), or approximately half the present magnetic-field intensity. This lower average value should provide an important constraint for future efforts to model the convective processes in the Earth's core which have been responsible for generating the magnetic field.