Dike surface lineations as magma flow indicators within the sheeted dike complex of the Troodos Ophiolite, Cyprus

Citation:
Varga, RJ, Gee JS, Staudigel H, Tauxe L.  1998.  Dike surface lineations as magma flow indicators within the sheeted dike complex of the Troodos Ophiolite, Cyprus. Journal of Geophysical Research-Solid Earth. 103:5241-5256.

Date Published:

Mar

Keywords:

de-fuca ridge, East Pacific Rise, finite strain, kilauea volcano, magnetic-susceptibility measurements, oceanic-crust, pipe vesicles, spreading structure, transform-fault, welded tuffs

Abstract:

Mesoscopic flow lineations and anisotropy of magnetic susceptibility (AMS) have been measured for dikes within the Cretaceous-age Troodos ophiolite with the goal of comparing the direction of initial magma now through dike conduits immediately following crack propagation with that of flow of subsequent magma emplaced during later stages of dike growth. Dike margin indicators of flow include cusp axes and elongate vesicles found high in the ophiolite peudostratigraphy and ridge-and-groove structures termed hot slickenlines found throughout the complex. A unique now direction is determined where elongate vesicles near dike margins display imbrication with respect to the margin. Significant changes in vesicle elongation directions across dikes likely indicate either changes in magma flow direction after dike propagation or backflow of magma during the waning stages of intrusion. Surface lineations generally lie subparallel to the direction of flow inferred from AMS determinations on cores within 5 cm of dike margins. Surface lineations also lie subparallel to the long axis (epsilon(1)) of the orientation ellipsoid defined by long axes of groundmass plagioclase phenocrysts measured in sections from AMS cores. Correlation of surface lineations with interior indicators of flow (AMS, plagioclase trachytic texture) indicate that the surface features are good proxies for grain-scale magma flow directions during dike propagation in Troodos dikes. Orientations of surface flow features in the dikes of the Troodos ophiolite indicate an approximately equal mix of subhorizontal to near-vertical magma flow, contradicting the paradigm of primarily vertical flow of magma beneath continuous axial magma chambers at oceanic spreading centers. Our data are consistent with a model of magma emplacement both vertically and horizontally away from isolated magma chambers beneath axial volcanoes spaced along a ridge crest.

Notes:

n/a

Website

DOI:

10.1029/97jb02717