Export 104 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Schilt, A, Brook EJ, Bauska TK, Baggenstos D, Fischer H, Joos F, Petrenko VV, Schaefer H, Schmitt J, Severinghaus JP, Spahni R, Stocker TF.  2014.  Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation. Nature. 516:234-+.   10.1038/nature13971   AbstractWebsite

Nitrous oxide (N2O) is an important greenhouse gas and ozone-depleting substance that has anthropogenic as well as natural marine and terrestrial sources(1). The tropospheric N2O concentrations have varied substantially in the past in concert with changing climate on glacial-interglacial and millennial timescales(2-8). It is not well understood, however, how N2O emissions from marine and terrestrial sources change in response to varying environmental conditions. The distinct isotopic compositions of marine and terrestrial N2O sources can help disentangle the relative changes in marine and terrestrial N2O emissions during past climate variations(4,9,10). Here we present N2O concentration and isotopic data for the last deglaciation, from 16,000 to 10,000 years before present, retrieved from air bubbles trapped in polar ice at Taylor Glacier, Antarctica. With the help of our data and a box model of the N2O cycle, we find a 30 per cent increase in total N2O emissions from the late glacial to the interglacial, with terrestrial and marine emissions contributing equally to the overall increase and generally evolving in parallel over the last deglaciation, even though there is no a priori connection between the drivers of the two sources. However, we find that terrestrial emissions dominated on centennial timescales, consistent with a state-of-the-art dynamic global vegetation and land surface process model that suggests that during the last deglaciation emission changes were strongly influenced by temperature and precipitation patterns over land surfaces. The results improve our understanding of the drivers of natural N2O emissions and are consistent with the idea that natural N2O emissions will probably increase in response to anthropogenic warming(11).

Landais, A, Caillon N, Severinghaus J, Barnola JM, Goujon C, Jouzel J, Masson-Delmotte V.  2004.  Isotopic measurements of air trapped in ice to quantify temperature changes. Comptes Rendus Geoscience. 336:963-970.   10.1016/j.crte.2004.03.013   AbstractWebsite

Isotopic measurements of air trapped in ice to quantify temperature changes. Isotopic measurements in polar ice core have shown a succession of rapid warming periods during the last glacial period over Greenland. However, this method underestimates the surface temperature variations. A new method based on gas thermal diffusion in the firn manages to quantify surface temperature variations through associated isotopic fractionations. We developed a method to extract air from the ice and to perform isotopic measurements to reduce analytical uncertainties to 0.006 and 0.020parts per thousand for delta(15)N and delta(40)Ar. It led to a 16 +/- 1.5degreesC surface temperature variation during a rapid warming (-70000 yr). (C) 2004 Academie des sciences. Publie par Elsevier SAS. Tous droits reserves.

Kawamura, K, Severinghaus JP, Albert MR, Courville ZR, Fahnestock MA, Scambos T, Shields E, Shuman CA.  2013.  Kinetic fractionation of gases by deep air convection in polar firn. Atmospheric Chemistry and Physics. 13:11141-11155.   10.5194/acp-13-11141-2013   AbstractWebsite

A previously unrecognized type of gas fractionation occurs in firn air columns subjected to intense convection. It is a form of kinetic fractionation that depends on the fact that different gases have different molecular diffusivities. Convective mixing continually disturbs diffusive equilibrium, and gases diffuse back toward diffusive equilibrium under the influence of gravity and thermal gradients. In near-surface firn where convection and diffusion compete as gas transport mechanisms, slow-diffusing gases such as krypton (Kr) and xenon (Xe) are more heavily impacted by convection than fast diffusing gases such as nitrogen (N-2) and argon (Ar), and the signals are preserved in deep firn and ice. We show a simple theory that predicts this kinetic effect, and the theory is confirmed by observations using a newly-developed Kr and Xe stable isotope system in air samples from the Megadunes field site on the East Antarctic plateau. Numerical simulations confirm the effect's magnitude at this site. A main purpose of this work is to support the development of a proxy indicator of past convection in firn, for use in ice-core gas records. To this aim, we also show with the simulations that the magnitude of the kinetic effect is fairly insensitive to the exact profile of convective strength, if the overall thickness of the convective zone is kept constant. These results suggest that it may be feasible to test for the existence of an extremely deep (similar to 30-40 m) convective zone, which has been hypothesized for glacial maxima, by future ice-core measurements.

Grachev, AM, Severinghaus JP.  2003.  Laboratory determination of thermal diffusion constants for N-29(2)/N-28(2) in air at temperatures from-60 to 0 degrees C for reconstruction of magnitudes of abrupt climate changes using the ice core fossil-air paleothermometer. Geochimica Et Cosmochimica Acta. 67:345-360.   10.1016/s0016-7037(02)01115-8   AbstractWebsite

Rapid temperature change causes fractionation of isotopic gaseous species in air in firn (snow) by thermal diffusion, producing a signal that is preserved in trapped air bubbles as the snow forms ice. Using a model of heat penetration and gas diffusion in the firn, as well as the values of appropriate thermal diffusion constants, it is possible to reconstruct the magnitude of a particular paleoclimate change. Isotopic nitrogen in air serves as a convenient tracer for such paleoreconstruction, because the ratio N-29(2)/N-28(2) has stayed extremely constant in the atmosphere for greater than or equal to10(6) years. However, prior to this work no data were available for thermal diffusion of N-29(2)/N-28(2) in air, but only in pure N-2. We devised a laboratory experiment allowing fractionation of gases by thermal diffusion in a small, tightly controlled temperature difference. A mass spectrometer was employed in measuring the resulting fractionations yielding measurement precision greater than was attainable by earlier thermal diffusion investigators. Our laboratory experiments indicate that the value of the thermal diffusion sensitivity (Omega) for N-29(2)/N-28(2) in air is +(14.7 +/- 0.5) X 10(-3) per mil/degreesC when the average temperature is -30.0degreesC. The corresponding value for N-29(2)/N-28(2) in pure N-2 that we find is +(15.3 +/- 0.4) X 10(-3) per mil/degreesC at -30.6degreesC, in agreement with the previously available literature data within their large range of uncertainty. We find that an empirical equation, Omega = (8.656/T-K - 1232/T-K(2)) +/- 3% per mil/degreesC, describes the slight variation of the sensitivity values for N-29(2)/N-28(2) in air with temperature in the range of -60 to 0degreesC. A separate set of experiments also described in this paper rules out adsorption as a candidate for producing additional temperature change-driven fractionation of N-29(2)/N-28(2) in the firn air. The combined newly obtained data constitute a calibration of the fossil-air paleothermometer with respect to isotopic nitrogen and will serve to improve the estimates of the magnitudes of past abrupt climate changes recorded in ice cores. Copyright (C) 2003 Elsevier Science Ltd.

Orsi, AJ, Cornuelle BD, Severinghaus JP.  2012.  Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide. Geophysical Research Letters. 39   10.1029/2012gl051260   AbstractWebsite

The largest climate anomaly of the last 1000 years in the Northern Hemisphere was the Little Ice Age (LIA) from 1400-1850 C. E., but little is known about the signature of this event in the Southern Hemisphere, especially in Antarctica. We present temperature data from a 300 m borehole at the West Antarctic Ice Sheet (WAIS) Divide. Results show that WAIS Divide was colder than the last 1000-year average from 1300 to 1800 C.E. The temperature in the time period 1400-1800 C.E. was on average 0.52 +/- 0.28 degrees C colder than the last 100-year average. This amplitude is about half of that seen at Greenland Summit (GRIP). This result is consistent with the idea that the LIA was a global event, probably caused by a change in solar and volcanic forcing, and was not simply a seesaw-type redistribution of heat between the hemispheres as would be predicted by some ocean-circulation hypotheses. The difference in the magnitude of the LIA between Greenland and West Antarctica suggests that the feedbacks amplifying the radiative forcing may not operate in the same way in both regions. Citation: Orsi, A. J., B. D. Cornuelle, and J. P. Severinghaus (2012), Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide, Geophys. Res. Lett., 39, L09710, doi: 10.1029/2012GL051260.

Orsi, AJ, Cornuelle BD, Severinghaus JP.  2014.  Magnitude and temporal evolution of Dansgaard-Oeschger event 8 abrupt temperature change inferred from nitrogen and argon isotopes in GISP2 ice using a new least-squares inversion. Earth and Planetary Science Letters. 395:81-90.   10.1016/j.epsl.2014.03.030   AbstractWebsite

Polar temperature is often inferred from water isotopes in ice cores. However, non-temperature effects on 3180 are important during the abrupt events of the last glacial period, such as changes in the seasonality of precipitation, the northward movement of the storm track, and the increase in accumulation. These effects complicate the interpretation of 8180 as a temperature proxy. Here, we present an independent surface temperature reconstruction, which allows us to test the relationship between delta O-18(ice) and temperature, during Dansgaard-Oeschger event 8, 38.2 thousand yrs ago using new delta N-15 and delta Ar-40 data from the GISP2 ice core in Greenland. This temperature reconstruction relies on a new inversion of inert gas isotope data using generalized least-squares, and includes a robust uncertainty estimation. We find that both temperature and delta O-18 increased in two steps of 20 and 140 yrs, with an overall amplitude of 11.80 +/- 1.8 degrees C between the stadial and interstadial centennial-mean temperature. The coefficient alpha = d delta O-18/dT changes with each time-segment, which shows that non-temperature sources of fractionation have a significant contribution to the delta O-18 signal. When measured on century-averaged values, we find that alpha = d delta O-18/dT = 0.32 +/- 0.06%(0)/degrees C, which is similar to the glacial/Holocene value of 0.328%(o)/degrees C. (C) 2014 Elsevier B.V. All rights reserved.

Bereiter, B, Shackleton S, Baggenstos D, Kawamura K, Severinghaus J.  2018.  Mean global ocean temperatures during the last glacial transition. Nature. 553:39-+.   10.1038/nature25152   AbstractWebsite

Little is known about the ocean temperature's long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 +/- 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism-and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO2, thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.

Petrenko, VV, Severinghaus JP, Schaefer H, Smith AM, Kuhl T, Baggenstos D, Hua Q, Brook EJ, Rose P, Kulin R, Bauska T, Harth C, Buizert C, Orsi A, Emanuele G, Lee JE, Brailsford G, Keeling R, Weiss RF.  2016.  Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates. Geochimica et Cosmochimica Acta. 177:62-77.   10.1016/j.gca.2016.01.004   Abstract

Carbon-14 (14C) is incorporated into glacial ice by trapping of atmospheric gases as well as direct near-surface in situ cosmogenic production. 14C of trapped methane (14CH4) is a powerful tracer for past CH4 emissions from “old” carbon sources such as permafrost and marine CH4 clathrates. 14C in trapped carbon dioxide (14CO2) can be used for absolute dating of ice cores. In situ produced cosmogenic 14C in carbon monoxide (14CO) can potentially be used to reconstruct the past cosmic ray flux and past solar activity. Unfortunately, the trapped atmospheric and in situ cosmogenic components of 14C in glacial ice are difficult to disentangle and a thorough understanding of the in situ cosmogenic component is needed in order to extract useful information from ice core 14C. We analyzed very large (≈1000 kg) ice samples in the 2.26–19.53 m depth range from the ablation zone of Taylor Glacier, Antarctica, to study in situ cosmogenic production of 14CH4 and 14CO. All sampled ice is >50 ka in age, allowing for the assumption that most of the measured 14C originates from recent in situ cosmogenic production as ancient ice is brought to the surface via ablation. Our results place the first constraints on cosmogenic 14CH4 production rates and improve on prior estimates of 14CO production rates in ice. We find a constant 14CH4/14CO production ratio (0.0076 ± 0.0003) for samples deeper than 3 m, which allows the use of 14CO for correcting the 14CH4 signals for the in situ cosmogenic component. Our results also provide the first unambiguous confirmation of 14C production by fast muons in a natural setting (ice or rock) and suggest that the 14C production rates in ice commonly used in the literature may be too high.

Brook, EJ, Severinghaus JP.  2011.  Methane and megafauna. Nature Geoscience. 4:271-272.   10.1038/ngeo1140   AbstractWebsite
Petrenko, VV, Etheridge DM, Weiss RF, Brook EJ, Schaefer H, Severinghaus JP, Smith AM, Lowe D, Hua QA, Riedel K.  2010.  Methane from the East Siberian Arctic Shelf. Science. 329:1146-1147.   10.1126/science.329.5996.1146-b   AbstractWebsite
Severinghaus, JP, Grachev A, Luz B, Caillon N.  2003.  A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica. Geochimica Et Cosmochimica Acta. 67:325-343.   10.1016/s0016-7037(02)00965-1   AbstractWebsite

We describe a method for measuring the (40)Ar/(36)Ar ratio and the (84)Kr/(36)Ar ratio in air from bubbles trapped in ice cores. These ratios can provide constraints on the past thickness of the firn layer at the ice core site and on the magnitude of past rapid temperature variations when combined with measured (15)N/(14)N. Both variables contribute to paleoclimatic studies and ultimately to the understanding of the controls on Earth's climate. The overall precision of the (40)Ar/(36)Ar method (1 standard error of the mean) is 0.012parts per thousand for a sample analyzed in duplicate, corresponding to +/-0.6 in in reconstructed firn thickness. We use conventional dynamic isotope ratio mass spectrometry with minor modifications and special gas handling techniques designed to avoid fractionation. About 100 g of ice is used for a duplicate pair of analyses. An example of the technique applied to the GISP2 ice core yields an estimate of 11 +/- 3K of abrupt warming at the end of the last glacial period 15,000 years ago. The krypton/argon ratio can provide a diagnostic of argon leakage out of the bubbles, which may happen (naturally) during bubble close-off or (artifactually) if samples are warmed near the freezing point during core retrieval or storage. Argon leakage may fractionate the remaining (40)Ar/(36)Ar ratio by +0.007parts per thousand per parts per thousand change in (84)Kr/(36)Ar, introducing a possible bias in reconstructed firn thickness of about +2 in if thermal diffusion is not accounted for or +6 in if thermal diffusion effects are quantified with measured (15)N/(14)N. Reproducibility of (84)Kr/(36)Ar measured in air is about +/-0.2parts per thousand (1 standard error of the mean) but is about +/-1parts per thousand for ice core samples. Ice core samples are systematically enriched in (84)Kr/(36)Ar relative to atmosphere by similar to5parts per thousand, probably reflecting preferential size-dependent exclusion of the smaller argon atom during bubble entrapment. Recent results from the Siple Dome ice core reveal two climate events during the last deglaciation, including an 18-in reduction in firn thickness associated with an abrupt warming at sometime between 18 and 22 kyr BP and a partial or total removal of the firn during an ablation event at 15.3 kyr BP. Copyright (C) 2003 Elsevier Science Ltd.

Headly, MA, Severinghaus JP.  2007.  A method to measure Kr/N-2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd008317   AbstractWebsite

We describe a new method for precise measurement of Kr/N-2 ratios in air bubbles trapped in ice cores and the first reconstruction of atmospheric Kr/N-2 during the last glacial maximum (LGM) similar to 20,000 years ago. After gravitational correction, the Kr/N-2 record in ice cores should represent the atmospheric ratio, which in turn should reflect past ocean temperature change due to the dependence of gas solubility on temperature. The increase in krypton inventory in the glacial ocean due to higher gas solubility in colder water causes a decrease in the atmospheric inventory of krypton. Assuming Kr and N-2 inventories in the ocean-atmosphere system are conserved, we use a mass balance model to estimate a mean ocean temperature change between the LGM and today. We measured Kr/N-2 in air bubbles in Greenland (GISP2) ice from the late Holocene and LGM, using the present atmosphere as a standard. The late Holocene delta Kr/N-2 means from two sets of measurements are not different from zero (+0.07 +/- 0.30 parts per thousand and -0.14 +/- 0.93 parts per thousand), as expected from the relatively constant climate of the last millennium. The mean delta Kr/N-2 in air bubbles from the LGM is -1.34 +/- 0.37 parts per thousand. Using the mass balance model, we estimate that the mean temperature change between the LGM ocean and today's ocean was 2.7 +/- 0.6 degrees C. Although this error is large compared to the observed change, this finding is consistent with most previous estimates of LGM deep ocean temperature based on foraminiferal delta O-18 and sediment pore water delta O-18 and chlorinity.

Severinghaus, JP.  2009.  Monsoons and Meltdowns. Science. 326:240-241.   10.1126/science.1179941   AbstractWebsite
Petrenko, VV, Smith AM, Brailsford G, Riedel K, Hua Q, Lowe D, Severinghaus JP, Levchenko V, Bromley T, Moss R, Muhle J, Brook EJ.  2008.  A new method for analyzing (14)C of methane in ancient air extracted from glacial ice. Radiocarbon. 50:53-73. AbstractWebsite

We present a new method developed for measuring radiocarbon of methane ((14)CH(4)) in ancient air samples extracted from glacial ice and dating 11,000-15,000 calendar years before present. The small size (similar to 20 mu g CH(4) carbon), low CH(4) concentrations ([CH(4)], 400-800 parts per billion [ppb]), high carbon monoxide concentrations ([CO]), and low (14)C activity of the samples created unusually high risks of contamination by extraneous carbon. Up to 2500 ppb CO in the air samples was quantitatively removed using the Sofnocat reagent. (14)C procedural blanks were greatly reduced through the construction of a new CH(4) conversion line utilizing platinized quartz wool for CH(4) combustion and the use of an ultra-high-purity iron catalyst for graphitization. The amount and (14)C activity of extraneous carbon added in the new CH(4) conversion line were determined to be 0.23 +/- 0.16 pg and 23.57 +/- 16.22 pMC, respectively. The amount of modern (100 pMC) carbon added during the graphitization step has been reduced to 0.03 mu g. The overall procedural blank for all stages of sample handling was 0.75 0.38 pMC for similar to 20-mu g, (14)C-free air samples with [CH(4)] of 500 ppb. Duration of the graphitization reactions for small (<25 mu g C) samples was greatly reduced and reaction yields improved through more efficient water vapor trapping and the use of a new iron catalyst with higher surface area. (14)C corrections for each step of sample handling have been determined. The resulting overall (14)CH(4) uncertainties for the ancient air samples are similar to 1.0 pMC.

Bereiter, B, Kawamura K, Severinghaus JP.  2018.  New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples. Rapid Communications in Mass Spectrometry. 32:801-814.   10.1002/rcm.8099   AbstractWebsite

RationaleThe global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores, can be used to reconstruct past mean ocean temperatures (MOTs). Here we introduce two successively developed methods to measure these parameters with a sufficient precision to provide new constraints on past changes in MOT. MethodsThe air from an 800-g ice sample - containing roughly 80mL STP air - is extracted and processed to be analyzed on two independent dual-inlet isotope ratio mass spectrometers. The primary isotope ratios (N-15, Ar-40 and Kr-86 values) are obtained with precisions in the range of 1 per meg (0.001) per mass unit. The three elemental ratio values Kr/N-2, Xe/N-2 and Xe/Kr are obtained using sequential (non-simultaneous) peak-jumping, reaching precisions in the range of 0.1-0.3. ResultsThe latest version of the method achieves a 30% to 50% better precision on the elemental ratios and a twofold better sample throughput than the previous one. The method development uncovered an unexpected source of artefactual gas fractionation in a closed system that is caused by adiabatic cooling and warming of gases (termed adiabatic fractionation) - a potential source of measurement artifacts in other methods. ConclusionsThe precisions of the three elemental ratios Kr/N-2, Xe/N-2 and Xe/Kr - which all contain the same MOT information - suggest smaller uncertainties for reconstructed MOTs (+/- 0.3-0.1 degrees C) than previous studies have attained. Due to different sensitivities of the noble gases to changes in MOT, Xe/N-2 provides the best constraints on the MOT under the given precisions followed by Xe/Kr, and Kr/N-2; however, using all of them helps to detect methodological artifacts and issues with ice quality.

Arnold, T, Harth CM, Mühle J, Manning AJ, Salameh PK, Kim J, Ivy DJ, Steele PL, Petrenko VV, Severinghaus JP, Baggenstos D, Weiss RF.  2013.  Nitrogen trifluoride global emissions estimated from updated atmospheric measurements. Proceedings of the National Academy of Sciences.   10.1073/pnas.1212346110   AbstractWebsite

Nitrogen trifluoride (NF3) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF3 in 2011 were 1.18 ± 0.21 Gg⋅y−1, or ∼20 Tg CO2-eq⋅y−1 (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF3). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y−2 over the prior decade. In terms of CO2 equivalents, current NF3 emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF3 over hexafluoroethane (C2F6) in electronics manufacture is significant—emissions of between 53 and 220 Tg CO2-eq⋅y−1 were avoided during 2011. Despite these savings, total NF3 emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF3 emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing.

Ritz, SP, Stocker TF, Severinghaus JP.  2011.  Noble gases as proxies of mean ocean temperature: sensitivity studies using a climate model of reduced complexity. Quaternary Science Reviews. 30:3728-3741.   10.1016/j.quascirev.2011.09.021   AbstractWebsite

Past global mean ocean temperature may be reconstructed from measurements of atmospheric noble gas concentrations in ice core bubbles. Assuming conservation of noble gases in the atmosphere-ocean system, the total concentration within the ocean mostly depends on solubility which itself is temperature dependent. Therefore, the colder the ocean, the more gas can be dissolved and the less remains in the atmosphere. Here, the characteristics of this novel paleoclimatic proxy are explored by implementing krypton, xenon, argon, and N(2) into a reduced-complexity climate model. The relationship between noble gas concentrations and global mean ocean temperature is investigated and their sensitivities to changes in ocean volume, ocean salinity, sea-level pressure and geothermal heat flux are quantified. We conclude that atmospheric noble gas concentrations are suitable proxies of global mean ocean temperature. Changes in ocean volume need to be considered when reconstructing ocean temperatures from noble gases. Calibration curves are provided to translate ice-core measurements of krypton, xenon, and argon into a global mean ocean temperature change. Simulated noble gas-to-nitrogen ratios for the last glacial maximum are delta Kr(atm) = -1.10 parts per thousand, delta Xe(atm) = -3.25 parts per thousand, and delta Ar(atm) = -0.29 parts per thousand. The uncertainty of the krypton calibration curve due to uncertainties of the ocean saturation concentrations is estimated to be +/- 0.3 degrees C. An additional 0.3 C uncertainty must be added for the last deglaciation and up to +/- 0.4 degrees C for earlier transitions due to age-scale uncertainties in the sea-level reconstructions. Finally, the fingerprint of idealized Dansgaard-Oeschger events in the atmospheric krypton-to-nitrogen ratio is presented. A delta Kr(atm) change of up to 0.34 parts per thousand is simulated for a 2 kyr Dansgaard-Oeschger event, and a change of up to 0.48 parts per thousand is simulated for a 4 kyr event. (C) 2011 Elsevier Ltd. All rights reserved.

Kawamura, K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, Severinghaus JP, Hutterli MA, Nakazawa T, Aoki S, Jouzel J, Raymo ME, Matsumoto K, Nakata H, Motoyama H, Fujita S, Goto-Azuma K, Fujii Y, Watanabe O.  2007.  Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature. 448:912-U4.   10.1038/nature06015   AbstractWebsite

The Milankovitch theory of climate change proposes that glacial interglacial cycles are driven by changes in summer insolation at high northern latitudes(1). The timing of climate change in the Southern Hemisphere at glacial-interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination(2,3), because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores(4,5). This ratio is a proxy for local summer insolation(5), and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores(6-9) and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations(3,10,11).

Petrenko, VV, Severinghaus JP, Brook EJ, Muhle J, Headly M, Harth CM, Schaefer H, Reeh N, Weiss RF, Lowe D, Smith AM.  2008.  A novel method for obtaining very large ancient air samples from ablating glacial ice for analyses of methane radiocarbon. Journal of Glaciology. 54:233-244.   10.3189/002214308784886135   AbstractWebsite

We present techniques for obtaining large (similar to 100 L STP) samples of ancient air for analysis of (14)C of methane ((14)CH(4)) and other trace constituents. Paleoatmospheric (14)CH(4) measurements should constrain the fossil fraction of past methane budgets, as well as provide a definitive test of methane clathrate involvement in large and rapid methane concentration ([CH(4)]) increases that accompanied rapid warming events during the last deglaciation. Air dating to the Younger Dryas-Preboreal and Oldest Dryas-Bolling abrupt climatic transitions was obtained by melt extraction from old glacial ice outcropping at an ablation margin in West Greenland. The outcropping ice and occluded air were dated using a combination of delta(15)N of N(2), delta(18)O of O(2), delta(18)O(ice) and [CH(4)] measurements. The [CH(4)] blank of the melt extractions was <4 ppb. Measurements of delta(18)O and delta(15)N indicated no significant gas isotopic fractionation from handling. Measured Ar/N(2), CFC-11 and CFC-12 in the samples indicated no significant contamination from ambient air. Ar/N(2), Kr/Ar and Xe/Ar ratios in the samples were used to quantify effects of gas dissolution during the melt extractions and correct the sample [CH(4)]. Corrected [CH(4)] is elevated over expected values by up to 132 ppb for most samples, suggesting some in situ CH(4) production in ice at this site.

Caillon, N, Jouzel J, Severinghaus JP, Chappellaz J, Blunier T.  2003.  A novel method to study the phase relationship between Antarctic and Greenland climate. Geophysical Research Letters. 30   10.1029/2003gl017838   AbstractWebsite

A classical method for understanding the coupling between northern and southern hemispheres during millennial-scale climate events is based on the correlation between Greenland and Antarctic ice core records of atmospheric composition. Here we present a new approach based on the use of a single Antarctic ice core in which measurements of methane concentration and inert gas isotopes place constraints on the timing of a rapid climate change in the North and of its Antarctic counterpart. We applied it to the Marine Isotope Stage (MIS) 5d/c transition early in the last glaciation similar to108 ky BP. Our results indicate that the Antarctic temperature increase occurred 2 ky before the methane increase, which is used as a time marker of the warming in the Northern Hemisphere. This result is in agreement with the "bipolar seesaw'' mechanism used to explain the phase relationships documented between 23 and 90 ky BP [Blunier and Brook, 2001].

Seibt, U, Brand WA, Heimann M, Lloyd J, Severinghaus JP, Wingate L.  2004.  Observations of O-2 : CO2 exchange ratios during ecosystem gas exchange. Global Biogeochemical Cycles. 18   10.1029/2004gb002242   AbstractWebsite

We determined O-2:CO2 exchange ratios of ecosystem fluxes during field campaigns in different forest ecosystems (Harvard Forest/United States, Griffin Forest/United Kingdom, Hainich/Germany). The exchange ratios of net assimilation observed in chamber experiments varied between 0.7 and 1.6, with averages of 1.1 to 1.2. A measurement of soil gas exchange yielded an exchange ratio of 0.94. On the other hand, the observed canopy air O-2:CO2 ratios, derived from the concurrent variations of O-2 and CO2 abundances in canopy air, were virtually indistinguishable from 1.0 over the full diurnal cycle. Simulations with a simple one-box model imply that the combined processes of assimilation, respiration, and turbulent exchange yield canopy air O-2:CO2 ratios that differ from the exchange ratios of the separate fluxes. In particular, the simulated canopy air O-2:CO2 ratios (1.01 to 1.12) were clearly lower than the exchange ratios of net turbulent fluxes between the ecosystem and the atmosphere (1.26 to 1.38). The simulated canopy air ratios were also sensitive to changes in the regional O-2:CO2 ratio of air above the canopy. Offsets between the various exchange ratios could thus arise if the component ecosystem fluxes have different diurnal cycles and distinct exchange ratios. Our results indicate that measurements of O-2 and CO2 abundances in canopy air may not be the appropriate method to determine O-2:CO2 exchange ratios of net ecosystem fluxes.

Mitchell, LE, Buizert C, Brook EJ, Breton DJ, Fegyveresi J, Baggenstos D, Orsi A, Severinghaus J, Alley RB, Albert M, Rhodes RH, McConnell JR, Sigl M, Maselli O, Gregory S, Ahn J.  2015.  Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research-Atmospheres. 120:2558-2574.   10.1002/2014jd022766   AbstractWebsite

Interpretation of ice core trace gas records depends on an accurate understanding of the processes that smooth the atmospheric signal in the firn. Much work has been done to understand the processes affecting air transport in the open pores of the firn, but a paucity of data from air trapped in bubbles in the firn-ice transition region has limited the ability to constrain the effect of bubble closure processes. Here we present high-resolution measurements of firn density, methane concentrations, nitrogen isotopes, and total air content that show layering in the firn-ice transition region at the West Antarctic Ice Sheet (WAIS) Divide ice core site. Using the notion that bubble trapping is a stochastic process, we derive a new parameterization for closed porosity that incorporates the effects of layering in a steady state firn modeling approach. We include the process of bubble trapping into an open-porosity firn air transport model and obtain a good fit to the firn core data. We find that layering broadens the depth range over which bubbles are trapped, widens the modeled gas age distribution of air in closed bubbles, reduces the mean gas age of air in closed bubbles, and introduces stratigraphic irregularities in the gas age scale that have a peak-to-peak variability of 10 years at WAIS Divide. For a more complete understanding of gas occlusion and its impact on ice core records, we suggest that this experiment be repeated at sites climatically different from WAIS Divide, for example, on the East Antarctic plateau.

Brook, EJ, Harder S, Severinghaus J, Steig EJ, Sucher CM.  2000.  On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochemical Cycles. 14:559-572.   10.1029/1999gb001182   AbstractWebsite

We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bolling-Allerod period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200-300 ppb over time periods of 100-300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large-scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient tan indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Bolling-Allerod period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods.

Fudge, TJ, Steig EJ, Markle BR, Schoenemann SW, Ding QH, Taylor KC, McConnell JR, Brook EJ, Sowers T, White JWC, Alley RB, Cheng H, Clow GD, Cole-Dai J, Conway H, Cuffey KM, Edwards JS, Edwards RL, Edwards R, Fegyveresi JM, Ferris D, Fitzpatrick JJ, Johnson J, Hargreaves G, Lee JE, Maselli OJ, Mason W, McGwire KC, Mitchell LE, Mortensen N, Neff P, Orsi AJ, Popp TJ, Schauer AJ, Severinghaus JP, Sigl M, Spencer MK, Vaughn BH, Voigt DE, Waddington ED, Wang XF, Wong GJ, Members WDP.  2013.  Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature. 500:440-+.   10.1038/nature12376   AbstractWebsite

The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate(1,2). Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago(3,4). An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently(2,5). Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere(6) associated with an abrupt decrease in Atlantic meridional overturning circulation(7). However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

Severinghaus, JP, Beaudette R, Headly MA, Taylor K, Brook EJ.  2009.  Oxygen-18 of O2 Records the Impact of Abrupt Climate Change on the Terrestrial Biosphere. Science. 324:1431-1434.   10.1126/science.1169473   AbstractWebsite

Photosynthesis and respiration occur widely on Earth's surface, and the O-18/O-16 ratio of the oxygen produced and consumed varies with climatic conditions. As a consequence, the history of climate is reflected in the deviation of the O-18/O-16 of air (delta O-18(atm)) from seawater delta O-18 (known as the Dole effect). We report variations in delta O-18(atm) over the past 60,000 years related to Heinrich and Dansgaard-Oeschger events, two modes of abrupt climate change observed during the last ice age. Correlations with cave records support the hypothesis that the Dole effect is primarily governed by the strength of the Asian and North African monsoons and confirm that widespread changes in low-latitude terrestrial rainfall accompanied abrupt climate change. The rapid delta O-18(atm) changes can also be used to synchronize ice records by providing global time markers.