Export 104 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
NEEM_Community_Members.  2013.  Eemian interglacial reconstructed from a Greenland folded ice core. Nature. 493:489-493.   10.1038/nature11789   Abstract

Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling (‘NEEM’) ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 ± 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 ± 250 metres, reaching surface elevations 122,000 years ago of 130 ± 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

Rhodes, RH, Brook EJ, Chiang JCH, Blunier T, Maselli OJ, McConnell JR, Romanini D, Severinghaus JP.  2015.  Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science. 348:1016-1019.   10.1126/science.1262005   AbstractWebsite

The causal mechanisms responsible for the abrupt climate changes of the Last Glacial Period remain unclear. One major difficulty is dating ice-rafted debris deposits associated with Heinrich events: Extensive iceberg influxes into the North Atlantic Ocean linked to global impacts on climate and biogeochemistry. In a new ice core record of atmospheric methane with ultrahigh temporal resolution, we find abrupt methane increases within Heinrich stadials 1, 2, 4, and 5 that, uniquely, have no counterparts in Greenland temperature proxies. Using a heuristic model of tropical rainfall distribution, we propose that Hudson Strait Heinrich events caused rainfall intensification over Southern Hemisphere land areas, thereby producing excess methane in tropical wetlands. Our findings suggest that the climatic impacts of Heinrich events persisted for 740 to 1520 years.

Cuffey, KM, Conway H, Gades AM, Hallet B, Lorrain R, Severinghaus JP, Steig EJ, Vaughn B, White JWC.  2000.  Entrainment at cold glacier beds. Geology. 28:351-354.   10.1130/0091-7613(2000)028<0351:eacgb>;2   AbstractWebsite

Here we present measurements of the gas content and isotopic composition of debris-rich basal layers of a polar glacier, Meserve Glacier, Antarctica, which has a basal temperature of -17 degrees C. These measurements show that debris entrainment has occurred without alteration of the glacial ice, and provide the most direct evidence to date that active entrainment occurs at the beds of cold glaciers, without bulk freezing of water. Entrainment at subfreezing temperatures may have formed the U-shaped trough containing Meserve Glacier. In addition to possibly allowing some cold-based glaciers to be important geomorphic agents, entrainment at subfreezing temperatures provides a general mechanism for formation of the dirty basal layers of polar glaciers and ice sheets, which are theologically distinct and can limit the time span of ice-core analyses. Furthermore, accumulating evidence suggests that geomorphologists should abandon the assumption that cold-based glaciers do not slide and abrade their beds.

Caillon, N, Severinghaus JP, Barnola JM, Chappellaz J, Jouzel J, Parrenin F.  2001.  Estimation of temperature change and of gas age ice age difference, 108 kyr BP, at Vostok, Antarctica. Journal of Geophysical Research-Atmospheres. 106:31893-31901.   10.1029/2001jd900145   AbstractWebsite

Air trapped in ice core bubbles provides our primary source of information about past atmospheres. Air isotopic composition ((15)N/(14)N and (40)Ar/(36)Ar) permits an estimate of the temperature shifts associated with abrupt climate changes because of isotope fractionation occurring in response to temperature gradients in the snow layer on top of polar ice sheets. A rapid surface temperature change modifies temporarily the firn temperature gradient, which causes a detectable anomaly in the isotopic composition of nitrogen and argon. The location of this anomaly in depth characterizes the gas age - ice age difference (Deltaage) during an abrupt,Gwent by correlation with the deltaD (or 5180) anomaly in the ice. We focus this study on the marine isotope stage 5d/5c transition (108 kyr B.P.), a climate warming which was one of the most abrupt events in the Vostok (Antarctica) ice isotopic record [Petit et al., 1999]. A step-like decrease in delta(15)N and delta(40)Ar/4 from 0.49 to 0.47 parts per thousand (possibly a gravitational signal due to a change in firn thickness) is preceded by a small but detectable delta(15)N peak (possibly a thermal diffusion signal). We obtain an estimate of 5350 +/- 300 yr for Deltaage, close to the model estimate of 5000 years obtained using the Vostok glaciological timescale. Our results also suggest that the use of the present-day spatial isotope-temperature relationship slightly underestimates (but by no more than 20 +/- 15%) the Vostok temperature change from present day at that time, which is in contrast to the temperature estimate based on borehole temperature measurements in Vostok which suggests that Antarctic temperature changes are underestimated by up to 50%.

Huber, C, Beyerle U, Leuenberger M, Schwander J, Kipfer R, Spahni R, Severinghaus JP, Weiler K.  2006.  Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth and Planetary Science Letters. 243:61-73.   10.1016/j.epsl.2005.12.036   AbstractWebsite

We present elemental and isotopic measurements of noble gases (He, Ne, Ar, Kr, and Xe), oxygen and nitrogen of firn air from two sites. The first set of samples was taken in 1998 at the summit of the Devon Ice Cap in the eastern part of Devon Island. The second set was taken in 2001 at NGRIP location (North Greenland). He and Ne are heavily enriched relative to Ar with respect to the atmosphere in the air near the close-off depth at around 50-70 in. The enrichment increases with depth and reaches the maximum value in the deepest samples just above the zone of impermeable ice where no free air could be extracted anymore. Similarly, elemental ratios of O(2)/N(2), O(2)/Ar and Ar/N(2) are increasing with depth. In contrast but in line with expectations, isotopic ratios of (15)N/(14)N, (18)O/(16)O, and (36)Ar/(40)Ar show no significant enrichment near the close-off depth. The observed isotopic ratios in the firn air column can be explained within the uncertainty ranges by the well-known processes of gravitational enrichment and thermal diffusion. To explain the elemental ratios, however, an additional fractionation process during bubble inclusion has to be considered. We implemented this additional process into our firn air model. The fractionation factors were found by fitting model profiles to the data. We found a very similar close-off fractionation behavior for the different molecules at both sites. For smaller gas species (mainly He and Ne) the fractionation factors are linearly correlated to the molecule size, whereas for diameters greater than about 3.6 A the fractionation seems to be significantly smaller or even negligible. An explanation for this size dependent fractionation process could be gas diffusion through the ice lattice. At Devon Island the enrichment at the bottom of the firn air column is about four times higher compared to NGRIP. We explain this by lower firn diffusivity at Devon Island, most probably due to melt layers, resulting in significantly reduced back diffusion of the excess gas near the close-off depth. The results of this study considerably increase the understanding of the processes occurring during air bubble inclusion near the close-off depth in firn and can help to improve the interpretation of direct firn air measurements, as well as air bubble measurements in ice cores, which are used in numerous studies as paleo proxies. (c) 2006 Elsevier B.V. All rights reserved.

Severinghaus, JP, Keeling RF, Miller BR, Weiss RF, Deck B, Broecker WS.  1997.  Feasibility of using sand dunes as archives of old air. Journal of Geophysical Research-Atmospheres. 102:16783-16792.   10.1029/97jd00525   AbstractWebsite

Large unaltered samples of the atmosphere covering the past century would complement the history of atmospheric gases obtained from bubbles in ice cores, enabling measurement of geochemically important species such as O-2, (CH4)-C-14, and (CO)-C-14. Sand dunes are a porous media with interstitial air in diffusive contact with the atmosphere, somewhat analogous to the unconsolidated layer of firn atop glaciers. Recent studies have demonstrated the value of firn as an archive of old air [Battle et al., 1996; Bender et al., 1994a]. Unlike firn, sand dunes are incompressible and so remain permeable to greater depths and may extend the firn record into the past century. To evaluate the feasibility of using sand dunes as archives of old air, we drilled 60 m deep test holes in the Algodones Dunes, Imperial Valley, California. The main objective was to see if the air in a sand dune is as old as predicted by a diffusion model, or if the dune is rapidly flushed by advective pumping during windstorms and barometric pressure changes. We dated the air with chlorofluorocarbons and krypton-85, anthropogenic tracers whose atmospheric concentrations are known and have been increasing rapidly in the past half century. These tracer data match the pure diffusion model well, showing that advection in this dune is negligible compared to diffusion as a transport mechanism and that the mean age of the air at 61 m depth is similar to 10 years. Dunes therefore do contain old air. However, dunes appear to suffer from two serious drawbacks as archives. Microbial metabolism is evident in elevated CO2 and N2O and depressed CH4 and O-2 concentrations in this dune, corrupting the signals of interest in this and probably most dunes. Second, isotopic analyses of N-2 and O-2 from the dune show that fractionation of the gases occurs due to diffusion of water vapor, complicating the interpretation of the O-2 signal beyond the point of viability for an air archive. Sand dunes may be useful for relatively inert gases with large atmospheric concentration changes such as chlorofluorocarbons.

Rasmussen, SO, Abbott PM, Blunier T, Bourne AJ, Brook E, Buchardt SL, Buizert C, Chappellaz J, Clausen HB, Cook E, Dahl-Jensen D, Davies SM, Guillevic M, Kipfstuhl S, Laepple T, Seierstad IK, Severinghaus JP, Steffensen JP, Stowasser C, Svensson A, Vallelonga P, Vinther BM, Wilhelms F, Winstrup M.  2013.  A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core. Climate of the Past. 9:2713-2730.   10.5194/cp-9-2713-2013   AbstractWebsite

A stratigraphy-based chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core has been derived by transferring the annual layer counted Greenland Ice Core Chronology 2005 (GICC05) and its model extension (GICC05modelext) from the NGRIP core to the NEEM core using 787 match points of mainly volcanic origin identified in the electrical conductivity measurement (ECM) and dielectrical profiling (DEP) records. Tephra horizons found in both the NEEM and NGRIP ice cores are used to test the matching based on ECM and DEP and provide five additional horizons used for the timescale transfer. A thinning function reflecting the accumulated strain along the core has been determined using a Dansgaard-Johnsen flow model and an isotope-dependent accumulation rate parameterization. Flow parameters are determined from Monte Carlo analysis constrained by the observed depth-age horizons. In order to construct a chronology for the gas phase, the ice age-gas age difference (Delta age) has been reconstructed using a coupled firn densification-heat diffusion model. Temperature and accumulation inputs to the Delta age model, initially derived from the water isotope proxies, have been adjusted to optimize the fit to timing constraints from delta N-15 of nitrogen and high-resolution methane data during the abrupt onset of Greenland interstadials. The ice and gas chronologies and the corresponding thinning function represent the first chronology for the NEEM core, named GICC05modelext-NEEM-1. Based on both the flow and firn modelling results, the accumulation history for the NEEM site has been reconstructed. Together, the timescale and accumulation reconstruction provide the necessary basis for further analysis of the records from NEEM.

Severinghaus, JP, Battle MO.  2006.  Fractionation of gases in polar lee during bubble close-off: New constraints from firn air Ne, Kr and Xe observations. Earth and Planetary Science Letters. 244:474-500.   10.1016/j.epsl.2006.01.032   AbstractWebsite

Gas ratios in air withdrawn from polar firn (snowpack) show systematic enrichments of Ne/N(2), O(2)/N(2) and Ar/N(2), in the firn-ice transition region where bubbles are closing off. Air from the bubbles in polar ice is correspondingly depleted in these ratios, after accounting for gravitational effects. Gas in the bubbles becomes fractionated during the process of bubble close-off and fractionation may continue as ice cores are stored prior to analysis. We present results from firn air studies at South Pole and Siple Dome, Antarctica, which add Ne, Kr and Xe measurements to the suite of observations. Ne, O(2) and Ar appear to be preferentially excluded from the shrinking and occluding bubbles, and these gases therefore accumulate in the residual firn air, creating a progressive enrichment with time (and depth) in firn air. Early sealing of gases by thin horizontal impermeable layers into a nondiffusive zone or "lock-in zone" greatly enhances this enrichment. A simple model of the bubble close-off fractionation and lock-in zone enrichment fits the data adequately. The model presumes that fractionation is caused by selective permeation of gas through the ice lattice from slightly overpressured bubbles. The effect appears to be size-dependent, because Ne, 02 and Ar have smaller effective molecular diameters than N(2), and fractionation increases strongly with decreasing size. Ne is fractionated 34 2 times more than 0, in South Pole firn air and reaches an enrichment of 90 parts per thousand in the deepest sample. The large atoms Kr and Xe do not appear to be fractionated by this process, despite the large size difference between the two gases, suggesting a threshold atomic diameter of similar to 3.6 angstrom above which the probability becomes very small that the gas will escape from the bubble. These findings have implications for ice core and firn air studies that use gas ratios to infer paleotemperature, chronology and past atmospheric composition. (c) 2006 Elsevier B.V.. All rights reserved.

Severinghaus, JP, Bender ML, Keeling RF, Broecker WS.  1996.  Fractionation of soil gases by diffusion of water vapor, gravitational settling, and thermal diffusion. Geochimica Et Cosmochimica Acta. 60:1005-1018.   10.1016/0016-7037(96)00011-7   AbstractWebsite

Air sampled from the moist unsaturated zone in a sand dune exhibits depletion in the heavy isotopes of N-2 and O-2. We propose that the depletion is caused by a diffusive flux of water vapor out of the dune, which sweeps out the other gases, forcing them to diffuse back into the dune. The heavy isotopes of N-2 and O-2 diffuse back more slowly, resulting in a steady-state depletion of the heavy isotopes in the dune interior. We predict the effect's magnitude with molecular diffusion theory and reproduce it in a laboratory simulation, finding good agreement between field, theory, and lab. The magnitude of the effect is governed by the ratio of the binary diffusivities against water vapor of a pair of gases, and increases similar to linearly with the difference between the water vapor mole fraction of the site and the advectively mixed reservoir with which it is in diffusive contact (in most cases the atmosphere). The steady-state effect is given by delta(i) = [i/j/i(0)/j(0) - 1] 10(3) parts per thousand congruent to [(1 - x(H2O)/1 - x(H2O0))((Dj-H2O/Di-H2O)-1) -1] 10(3) parts per thousand, where delta(i) is the fractional deviation in permil of the gas i/gas j ratio from the advectively mixed reservoir, x(H2O) and x(H2O0) are respectively the mole fractions of water vapor at the site and in the advectively mixed reservoir, and D-i-H2O is the binary diffusion coefficient of gas i with water vapor. The effect is independent of scale at steady state, but approaches steady state with the time constant of diffusion set by the length scale. Exploiting the mechanism, we make an experimental estimate of the relative diffusivities of O-2 and N-2 against water vapor, finding that O-2 diffuses 3.6 +/- 0.3% faster than N-2 despite its greater mass. We also confirm in the study dune the presence of two additional known processes: gravitational fractionation, heretofore seen only in the unconsolidated firn of polar ice sheets, and thermal diffusion, well described in laboratory studies but not seen previously in nature. We predict that soil gases in general will exhibit the three effects described here, the water vapor flux fractionation effect, gravitational fractionation, and thermal diffusion. However, our analysis neglects Knudsen diffusion and thus may be inapplicable to fine-grained soils.

Atwater, T, Sclater J, Sandwell D, Severinghaus J, Marlow M.  1993.  Fracture zone traces across the North Pacific Cretaceous Quiet Zone and their tectonic implications. The Mesozoic Pacific : geology, tectonics, and volcanism : a volume in memory of Sy Schlanger. ( Pringle MS, Sager WW, Sliter WV, Stein S, Eds.).:137-154., Washington, DC: American Geophysical Union Abstract
Petrenko, VV, Severinghaus JP, Brook EJ, Reeh N, Schaefer H.  2006.  Gas records from the West Greenland ice margin covering the Last Glacial Termination: a horizontal ice core. Quaternary Science Reviews. 25:865-875.   10.1016/j.quascirev.2005.09.005   AbstractWebsite

Certain sites along ice sheet margins provide an easily accessible and almost unlimited supply of ancient ice at the surface. Measurements of gases in trapped air from ice outcropping at Pakitsoq, West Greenland, demonstrate that ancient air is mostly well preserved. No alterations in delta O-18(atm) and delta N-15 of N-2 are apparent, and alterations in methane are found in only a few ice sections. Using measurements of these gases, we have unambiguously identified a stratigraphic section containing ice from the end of last glacial period as well as Bolling-Allerod, Younger Dryas and Preboreal intervals. Extensive sections of ice from the Holocene and most ages within the last glacial period are probably also present. Very accurate dating has been possible in the ice section containing the Younger Dryas-Preboreal abrupt climate transition signal. The ice at Pakitsoq is folded and non-uniformly thinned, with many cross-cutting bands of bubble-free ice and dust. The cross-cutting features are associated with anomalies in both the gas and the ice records. With careful sampling to avoid these, the ice at Pakitsoq is suitable for recovery of large-volume samples of the ancient atmosphere for analysis of trace constituents such as (CH4)-C-14. (c) 2005 Elsevier Ltd. All rights reserved.

Buizert, C, Martinerie P, Petrenko VV, Severinghaus JP, Trudinger CM, Witrant E, Rosen JL, Orsi AJ, Rubino M, Etheridge DM, Steele LP, Hogan C, Laube JC, Sturges WT, Levchenko VA, Smith AM, Levin I, Conway TJ, Dlugokencky EJ, Lang PM, Kawamura K, Jenk TM, White JWC, Sowers T, Schwander J, Blunier T.  2012.  Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland. Atmospheric Chemistry and Physics. 12:4259-4277.   10.5194/acp-12-4259-2012   AbstractWebsite

Air was sampled from the porous firn layer at the NEEM site in Northern Greenland. We use an ensemble of ten reference tracers of known atmospheric history to characterise the transport properties of the site. By analysing uncertainties in both data and the reference gas atmospheric histories, we can objectively assign weights to each of the gases used for the depth-diffusivity reconstruction. We define an objective root mean square criterion that is minimised in the model tuning procedure. Each tracer constrains the firn profile differently through its unique atmospheric history and free air diffusivity, making our multiple-tracer characterisation method a clear improvement over the commonly used single-tracer tuning. Six firn air transport models are tuned to the NEEM site; all models successfully reproduce the data within a 1 sigma Gaussian distribution. A comparison between two replicate boreholes drilled 64 m apart shows differences in measured mixing ratio profiles that exceed the experimental error. We find evidence that diffusivity does not vanish completely in the lock-in zone, as is commonly assumed. The ice age- gas age difference (Delta age) at the firn-ice transition is calculated to be 182(-9)(+3) yr. We further present the first intercomparison study of firn air models, where we introduce diagnostic scenarios designed to probe specific aspects of the model physics. Our results show that there are major differences in the way the models handle advective transport. Furthermore, diffusive fractionation of isotopes in the firn is poorly constrained by the models, which has consequences for attempts to reconstruct the isotopic composition of trace gases back in time using firn air and ice core records.

Alley, RB, Lynch-Stieglitz J, Severinghaus JP.  1999.  Global climate change. Proceedings of the National Academy of Sciences of the United States of America. 96:9987-9988.   10.1073/pnas.96.18.9987   AbstractWebsite

Most of the last 100,000 years or longer has been characterized by large, abrupt, regional-to-global climate changes. Agriculture and industry have developed during anomalously stable climatic conditions, New, high-resolution analyses of sediment cores using multiproxy and physically based transfer functions allow increasingly confident interpretation of these past changes as having been caused by "band jumps" between modes of operation of the climate system. Recurrence of such band jumps is possible and might be affected by human activities.

Buizert, C, Gkinis V, Severinghaus JP, He F, Lecavalier BS, Kindler P, Leuenberger M, Carlson AE, Vinther B, Masson-Delmotte V, White JWC, Liu ZY, Otto-Bliesner B, Brook EJ.  2014.  Greenland temperature response to climate forcing during the last deglaciation. Science. 345:1177-1180.   10.1126/science.1254961   AbstractWebsite

Greenland ice core water isotopic composition (delta O-18) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional delta O-18 interpretation, the Younger Dryas period was 4.5 degrees +/- 2 degrees C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9 degrees to 14 degrees C) than in the northwest (5 degrees to 9 degrees C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon.

Severinghaus, JP, Macdonald KC.  1988.  High inside Corners at Ridge-Transform Intersections. Marine Geophysical Researches. 9:353-367.   10.1007/bf00315005   AbstractWebsite

A large topographic high commonly occurs near the intersection of a rifted spreading center and a transform fault. The high occurs at the inside of the 90° bend in the plate boundary, and is called the ‘high inside corner’, while the area across the spreading center, the ‘outside corner’, is often anomalously low. To better understand the origin of this topographic asymmetry, we examine topographic maps of 53 ridge-transform intersections. We conclude the following: (1) High inside corners occur at 41 out of 42 ridge-transform intersections at slow spreading ridges, and thus should be considered characteristic and persistent features of rifted slow spreading ridges. They are conspicuously absent at fast spreading ridges or at spreading centers that lack a rift valley. (2) High inside corners occur wherever an axial rift valley is present, and an approximate 1:1 correlation exists between the relief of the rift valley and the magnitude of the asymmetry. (3) Large high inside corners occur at both long and short transform offsets. (4) High inside corners at long offsets decay off-axis faster than predicted by the square root of age cooling model, precluding a thermalisostatic origin, but consistent with dynamic or flexural uplift models.These observations support the existing hypothesis that the asymmetry is due to the contrast in lithospheric coupling that occurs in the active transform versus the inactive fracture zone. Active faulting in the transform breaks the lithosphere along a high angle fault, permitting vertical movement of the inside corner block, whereas the inactive fracture zone forms a weld that couples the outside corner to the adjacent block, preventing it from rising. Large asymmetry at very short transform offsets appears to be caused by the added effect of a second uplift mechanism. Young lithosphere in the rift valley couples to the older plate, and when it leaves the rift valley it lifts the older plate with it. At very short offsets, this ‘coupled uplift’ acts upon the high inside corner; at long offsets, it may upwarp the older plate or its expression may be muted.

Kobashi, T, Kawamura K, Severinghaus JP, Barnola JM, Nakaegawa T, Vinther BM, Johnsen SJ, Box JE.  2011.  High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core. Geophysical Research Letters. 38   10.1029/2011gl049444   AbstractWebsite

Greenland recently incurred record high temperatures and ice loss by melting, adding to concerns that anthropogenic warming is impacting the Greenland ice sheet and in turn accelerating global sea-level rise. Yet, it remains imprecisely known for Greenland how much warming is caused by increasing atmospheric greenhouse gases versus natural variability. To address this need, we reconstruct Greenland surface snow temperature variability over the past 4000 years at the GISP2 site (near the Summit of the Greenland ice sheet; hereafter referred to as Greenland temperature) with a new method that utilises argon and nitrogen isotopic ratios from occluded air bubbles. The estimated average Greenland snow temperature over the past 4000 years was -30.7 degrees C with a standard deviation of 1.0 degrees C and exhibited a long-term decrease of roughly 1.5 degrees C, which is consistent with earlier studies. The current decadal average surface temperature (2001-2010) at the GISP2 site is -29.9 degrees C. The record indicates that warmer temperatures were the norm in the earlier part of the past 4000 years, including century-long intervals nearly 1 C warmer than the present decade (20012010). Therefore, we conclude that the current decadal mean temperature in Greenland has not exceeded the envelope of natural variability over the past 4000 years, a period that seems to include part of the Holocene Thermal Maximum. Notwithstanding this conclusion, climate models project that if anthropogenic greenhouse gas emissions continue, the Greenland temperature would exceed the natural variability of the past 4000 years sometime before the year 2100. Citation: Kobashi, T., K. Kawamura, J. P. Severinghaus, J.-M. Barnola, T. Nakaegawa, B. M. Vinther, S. J. Johnsen, and J. E. Box (2011), High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core, Geophys. Res. Lett., 38, L21501, doi:10.1029/2011GL049444.

Petrenko, VV, Severinghaus JP, Smith AM, Riedel K, Baggenstos D, Harth C, Orsi A, Hua Q, Franz P, Takeshita Y, Brailsford GW, Weiss RF, Buizert C, Dickson A, Schaefer H.  2013.  High-precision C-14 measurements demonstrate production of in situ cosmogenic (CH4)-C-14 and rapid loss of in situ cosmogenic (CO)-C-14 in shallow Greenland firn. Earth and Planetary Science Letters. 365:190-197.   10.1016/j.epsl.2013.01.032   AbstractWebsite

Measurements of radiocarbon (C-14) in carbon dioxide (CO2), methane (CH4) and carbon monoxide (CO) from glacial ice are potentially useful for absolute dating of ice cores, studies of the past atmospheric CH4 budget and for reconstructing the past cosmic ray flux and solar activity. Interpretation of C-14 signals in ice is complicated by the fact that the two major C-14 components-trapped atmospheric and in situ cosmogenic-are present in a combined form, as well as by a very limited understanding of the in situ component. This study measured (CH4)-C-14 and (CO)-C-14 content in glacial firn with unprecedented precision to advance understanding of the in situ C-14 component. (CH4)-C-14 and (CO)-C-14 were melt-extracted on site at Summit, Greenland from three very large (similar to 1000 kg each) replicate samples of firn that spanned a depth range of 3.6-5.6 m. Non-cosmogenic C-14 contributions were carefully characterized through simulated extractions and a suite of supporting measurements. In situ cosmogenic (CO)-C-14 was quantified to better than +/- 0.6 molecules g(-1) ice, improving on the precision of the best prior ice (CO)-C-14 measurements by an order of magnitude. The (CO)-C-14 measurements indicate that most (>99%) of the in situ cosmogenic C-14 is rapidly lost from shallow Summit firn to the atmosphere. Despite this rapid C-14 loss, our measurements successfully quantified (CH4)-C-14 in the retained fraction of cosmogenic C-14 (to +/- 0.01 molecules g(-1) ice or better), and demonstrate for the first time that a significant amount of (CH4)-C-14 is produced by cosmic rays in natural ice. This conclusion increases the confidence in the results of an earlier study that used measurements of (CH4)-C-14 in glacial ice to show that wetlands were the likely main driver of the large and rapid atmospheric CH4 increase approximately 1 1.6 kyr ago. (C) 2013 Elsevier B.V. All rights reserved.

Taylor, KC, Mayewski PA, Alley RB, Brook EJ, Gow AJ, Grootes PM, Meese DA, Saltzman ES, Severinghaus JP, Twickler MS, White JWC, Whitlow S, Zielinski GA.  1997.  The Holocene Younger Dryas transition recorded at Summit, Greenland. Science. 278:825-827.   10.1126/science.278.5339.825   AbstractWebsite

Analysis of ice from Dye-3, Greenland, has demonstrated that the transition between the Younger Dryas and Holocene climate periods occurred over a 40-year period. A near annually resolved, multiparameter record of the transition recorded in the GISP2 core from Summit, Greenland, shows that most of the transition occurred in a series of steps with durations of about 5 years. Some climate proxies associated with more northern regions. Changes in atmospheric water vapor are likely to have played a large role in the climate transition.

Baggenstos, D, Severinghaus JP, Mulvaney R, McConnell JR, Sigl M, Maselli O, Petit JR, Grente B, Steig EJ.  2018.  A horizontal ice core from Taylor Glacier, its implications for Antarctic climate history, and an improved Taylor Dome ice core time scale. Paleoceanography and Paleoclimatology. 33:778-794.   10.1029/2017pa003297   AbstractWebsite

Ice core records from Antarctica show mostly synchronous temperature variations during the last deglacial transition, an indication that the climate of the entire continent reacted as one unit to the global changes. However, a record from the Taylor Dome ice core in the Ross Sea sector of East Antarctica has been suggested to show a rapid warming, similar in style and synchronous with the Oldest Dryas-Bolling warming in Greenland. Since publication of the Taylor Dome record, a number of lines of evidence have suggested that this interpretation is incorrect and reflects errors in the underlying time scale. The issues raised regarding the dating of Taylor Dome currently linger unresolved, and the original time scale remains the de facto chronology. We present new water isotope and chemistry data from nearby Taylor Glacier to resolve the confusion surrounding the Taylor Dome time scale. We find that the Taylor Glacier record is incompatible with the original interpretation of the Taylor Dome ice core, showing that the warming in the area was gradual and started at similar to 18 ka BP (before 1950) as seen in other East Antarctic ice cores. We build a consistent, up-to-date Taylor Dome chronology from 0 to 60 ka BP by combining new and old age markers based on synchronization to other ice core records. The most notable feature of the new TD2015 time scale is a gas age-ice age difference of up to 12,000 years during the Last Glacial Maximum, by far the largest ever observed.

Rosen, JL, Brook EJ, Severinghaus JP, Blunier T, Mitchell LE, Lee JE, Edwards JS, Gkinis V.  2014.  An ice core record of near-synchronous global climate changes at the Bolling transition. Nature Geoscience. 7:459-463.   10.1038/ngeo2147   AbstractWebsite

The abrupt warming that initiated the Bolling-Allerod interstadial was the penultimate warming in a series of climate variations known as Dansgaard-Oeschger events. Despite the clear expression of this transition in numerous palaeoclimate records, the relative timing of climate shifts in different regions of the world and their causes are subject to debate. Here we explore the phasing of global climate change at the onset of the Bolling-Allerod using air preserved in bubbles in the North Greenland Eemian ice core. Specifically, we measured methane concentrations, which act as a proxy for low-latitude climate, and the N-15/N-14 ratio of N-2, which reflects Greenland surface temperature, over the same interval of time. We use an atmospheric box model and a firn air model to account for potential uncertainties in the data, and find that changes in Greenland temperature and atmospheric methane emissions at the Bolling onset occurred essentially synchronously, with temperature leading by 4.5(-24)(+21) years. We cannot exclude the possibility that tropical climate could iag changing methane concentrations by up to several decades, if the initial methane rise came from boreal sources alone. However, because even boreal methane-producing regions lie far from Greenland, we conclude that the mechanism that drove abrupt change at this time must be capable of rapidly transmitting climate changes across the globe.

Schaefer, H, Whiticar MJ, Brook EJ, Petrenko VV, Ferretti DF, Severinghaus JP.  2006.  Ice record of delta C-13 for atmospheric CH4 across the Younger Dryas-Preboreal transition. Science. 313:1109-1112.   10.1126/science.1126562   AbstractWebsite

We report atmospheric methane carbon isotope ratios (delta(CH4)-C-13) from the Western Greenland ice margin spanning the Younger Dryas - to - Preboreal (YD-PB) transition. Over the recorded similar to 800 years, delta(CH4)-C-13 was around - 46 per mil (parts per thousand); that is, similar to 1 parts per thousand higher than in the modern atmosphere and similar to 5.5 parts per thousand higher than would be expected from budgets without C-13-rich anthropogenic emissions. This requires higher natural C-13-rich emissions or stronger sink fractionation than conventionally assumed. Constant delta(CH4)-C-13 during the rise in methane concentration at the YD-PB transition is consistent with additional emissions from tropical wetlands, or aerobic plant CH4 production, or with a multisource scenario. A marine clathrate source is unlikely.

Schaefer, H, Petrenko VV, Brook EJ, Severinghaus JP, Reeh N, Melton JR, Mitchell L.  2009.  Ice stratigraphy at the Pakitsoq ice margin, West Greenland, derived from gas records. Journal of Glaciology. 55:411-421.   10.3189/002214309788816704   AbstractWebsite

Horizontal ice-core sites, where ancient ice is exposed at the glacier surface, offer unique opportunities for paleo-studies of trace components requiring large sample volumes. Following previous work at the Pakitsoq ice margin in West Greenland, we use a combination of geochemical parameters measured in the ice matrix (delta(18)O(ice)) and air occlusions (delta(18)O(atm), delta(15)N of N(2) and methane concentration) to date ice layers from specific climatic intervals. The data presented here expand our understanding of the stratigraphy and three-dimensional structure of ice layers outcropping at Pakitsoq. Sections containing ice from every distinct climatic interval during Termination I, including Last Glacial Maximum, Bolling/Allerod, Younger Dryas and the early Holocene, are identified. In the early Holocene, we find evidence for climatic fluctuations similar to signals found in deep ice cores from Greenland. A second glacial-interglacial transition exposed at the extreme margin of the ice is identified as another outcrop of Termination I (rather than the onset of the Eemian interglacial as postulated in earlier work). Consequently, the main structural feature at Pakitsoq is a large-scale anticline with accordion-type folding in both exposed sequences of the glacial-Holocene transition, leading to multiple layer duplications and age reversals.

Buerki, PR, Jackson BC, Schilling T, Rufer T, Severinghaus JP.  2006.  Improved helium exchange gas cryostat and sample tube designs for automated gas sampling and cryopumping. Geochemistry Geophysics Geosystems. 7   10.1029/2006gc001341   AbstractWebsite

[ 1] In order to eliminate the use of liquid helium for the extraction of atmospheric gases from polar ice cores, two units of a redesigned top load helium exchange gas cryostat were built and tested. The cryostats feature the shortest and largest diameter sample wells built to date, a base temperature below 7 Kelvin, and a sample well without baffles. The cryostats allowed shortening the length and thus increasing the gas pressure inside our sample tubes by 58% and increasing the amount of sample ending up in the mass spectrometer by 4.4%. The cryostats can either be used as mobile stand-alone units for manual gas processing lines or integrated into a fully automated vacuum extraction and gas analysis line. For the latter application the cryostat was equipped with a custom-designed automated changeover system.

Buizert, C, Petrenko VV, Kavanaugh JL, Cuffey KM, Lifton NA, Brook EJ, Severinghaus JP.  2012.  In situ cosmogenic radiocarbon production and 2-D ice flow line modeling for an Antarctic blue ice area. Journal of Geophysical Research-Earth Surface. 117   10.1029/2011jf002086   AbstractWebsite

Radiocarbon measurements at ice margin sites and blue ice areas can potentially be used for ice dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic C-14 production in ice, and this component must be well understood before useful information can be extracted from C-14 data. We combine cosmic ray scaling and production estimates with a two-dimensional ice flow line model to study cosmogenic C-14 production at Taylor Glacier, Antarctica. We find (1) that C-14 production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including ice flow patterns caused by basal topography can lead to a surface C-14 activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional ice flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future C-14 and ice flow studies at ice margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric C-14 content of methane.

Birner, B, Buizert C, Wagner TJW, Severinghaus JP.  2018.  The influence of layering and barometric pumping on firn air transport in a 2-D model. Cryosphere. 12:2021-2037.   10.5194/tc-12-2021-2018   AbstractWebsite

Ancient air trapped in ice core bubbles has been paramount to developing our understanding of past climate and atmospheric composition. Before air bubbles become isolated in ice, the atmospheric signal is altered in the firn column by transport processes such as advection and diffusion. However, the influence of low-permeability layers and barometric pumping (driven by surface pressure variability) on firn air transport is not well understood and is not readily captured in conventional one-dimensional (1-D) firn air models. Here we present a two-dimensional (2-D) trace gas advection-diffusion-dispersion model that accounts for discontinuous horizontal layers of reduced permeability. We find that layering or barometric pumping individually yields too small a reduction in gravitational settling to match observations. In contrast, when both effects are active, the model's gravitational fractionation is suppressed as observed. Layering focuses airflows in certain regions in the 2-D model, which acts to amplify the dispersive mixing resulting from barometric pumping. Hence, the representation of both factors is needed to obtain a realistic emergence of the lock-in zone. In contrast to expectations, we find that the addition of barometric pumping in the layered 2-D model does not substantially change the differential kinetic fractionation of fast-and slow-diffusing trace gases. Like 1-D models, the 2-D model substantially underestimates the amount of differential kinetic fractionation seen in actual observations, suggesting that further subgrid-scale processes may be missing in the current generation of firn air transport models. However, we find robust scaling relationships between kinetic isotope fractionation of different noble gas isotope and elemental ratios. These relationships may be used to correct for kinetic fractionation in future high-precision ice core studies and can amount to a bias of up to 0.45 degrees C in noble-gas-based mean ocean temperature reconstructions at WAIS Divide, Antarctica.