Export 7 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
Petrenko, VV, Smith AM, Brailsford G, Riedel K, Hua Q, Lowe D, Severinghaus JP, Levchenko V, Bromley T, Moss R, Muhle J, Brook EJ.  2008.  A new method for analyzing (14)C of methane in ancient air extracted from glacial ice. Radiocarbon. 50:53-73. AbstractWebsite

We present a new method developed for measuring radiocarbon of methane ((14)CH(4)) in ancient air samples extracted from glacial ice and dating 11,000-15,000 calendar years before present. The small size (similar to 20 mu g CH(4) carbon), low CH(4) concentrations ([CH(4)], 400-800 parts per billion [ppb]), high carbon monoxide concentrations ([CO]), and low (14)C activity of the samples created unusually high risks of contamination by extraneous carbon. Up to 2500 ppb CO in the air samples was quantitatively removed using the Sofnocat reagent. (14)C procedural blanks were greatly reduced through the construction of a new CH(4) conversion line utilizing platinized quartz wool for CH(4) combustion and the use of an ultra-high-purity iron catalyst for graphitization. The amount and (14)C activity of extraneous carbon added in the new CH(4) conversion line were determined to be 0.23 +/- 0.16 pg and 23.57 +/- 16.22 pMC, respectively. The amount of modern (100 pMC) carbon added during the graphitization step has been reduced to 0.03 mu g. The overall procedural blank for all stages of sample handling was 0.75 0.38 pMC for similar to 20-mu g, (14)C-free air samples with [CH(4)] of 500 ppb. Duration of the graphitization reactions for small (<25 mu g C) samples was greatly reduced and reaction yields improved through more efficient water vapor trapping and the use of a new iron catalyst with higher surface area. (14)C corrections for each step of sample handling have been determined. The resulting overall (14)CH(4) uncertainties for the ancient air samples are similar to 1.0 pMC.

Bereiter, B, Kawamura K, Severinghaus JP.  2018.  New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples. Rapid Communications in Mass Spectrometry. 32:801-814.   10.1002/rcm.8099   AbstractWebsite

RationaleThe global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores, can be used to reconstruct past mean ocean temperatures (MOTs). Here we introduce two successively developed methods to measure these parameters with a sufficient precision to provide new constraints on past changes in MOT. MethodsThe air from an 800-g ice sample - containing roughly 80mL STP air - is extracted and processed to be analyzed on two independent dual-inlet isotope ratio mass spectrometers. The primary isotope ratios (N-15, Ar-40 and Kr-86 values) are obtained with precisions in the range of 1 per meg (0.001) per mass unit. The three elemental ratio values Kr/N-2, Xe/N-2 and Xe/Kr are obtained using sequential (non-simultaneous) peak-jumping, reaching precisions in the range of 0.1-0.3. ResultsThe latest version of the method achieves a 30% to 50% better precision on the elemental ratios and a twofold better sample throughput than the previous one. The method development uncovered an unexpected source of artefactual gas fractionation in a closed system that is caused by adiabatic cooling and warming of gases (termed adiabatic fractionation) - a potential source of measurement artifacts in other methods. ConclusionsThe precisions of the three elemental ratios Kr/N-2, Xe/N-2 and Xe/Kr - which all contain the same MOT information - suggest smaller uncertainties for reconstructed MOTs (+/- 0.3-0.1 degrees C) than previous studies have attained. Due to different sensitivities of the noble gases to changes in MOT, Xe/N-2 provides the best constraints on the MOT under the given precisions followed by Xe/Kr, and Kr/N-2; however, using all of them helps to detect methodological artifacts and issues with ice quality.

Arnold, T, Harth CM, Mühle J, Manning AJ, Salameh PK, Kim J, Ivy DJ, Steele PL, Petrenko VV, Severinghaus JP, Baggenstos D, Weiss RF.  2013.  Nitrogen trifluoride global emissions estimated from updated atmospheric measurements. Proceedings of the National Academy of Sciences.   10.1073/pnas.1212346110   AbstractWebsite

Nitrogen trifluoride (NF3) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF3 in 2011 were 1.18 ± 0.21 Gg⋅y−1, or ∼20 Tg CO2-eq⋅y−1 (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF3). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y−2 over the prior decade. In terms of CO2 equivalents, current NF3 emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF3 over hexafluoroethane (C2F6) in electronics manufacture is significant—emissions of between 53 and 220 Tg CO2-eq⋅y−1 were avoided during 2011. Despite these savings, total NF3 emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF3 emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing.

Ritz, SP, Stocker TF, Severinghaus JP.  2011.  Noble gases as proxies of mean ocean temperature: sensitivity studies using a climate model of reduced complexity. Quaternary Science Reviews. 30:3728-3741.   10.1016/j.quascirev.2011.09.021   AbstractWebsite

Past global mean ocean temperature may be reconstructed from measurements of atmospheric noble gas concentrations in ice core bubbles. Assuming conservation of noble gases in the atmosphere-ocean system, the total concentration within the ocean mostly depends on solubility which itself is temperature dependent. Therefore, the colder the ocean, the more gas can be dissolved and the less remains in the atmosphere. Here, the characteristics of this novel paleoclimatic proxy are explored by implementing krypton, xenon, argon, and N(2) into a reduced-complexity climate model. The relationship between noble gas concentrations and global mean ocean temperature is investigated and their sensitivities to changes in ocean volume, ocean salinity, sea-level pressure and geothermal heat flux are quantified. We conclude that atmospheric noble gas concentrations are suitable proxies of global mean ocean temperature. Changes in ocean volume need to be considered when reconstructing ocean temperatures from noble gases. Calibration curves are provided to translate ice-core measurements of krypton, xenon, and argon into a global mean ocean temperature change. Simulated noble gas-to-nitrogen ratios for the last glacial maximum are delta Kr(atm) = -1.10 parts per thousand, delta Xe(atm) = -3.25 parts per thousand, and delta Ar(atm) = -0.29 parts per thousand. The uncertainty of the krypton calibration curve due to uncertainties of the ocean saturation concentrations is estimated to be +/- 0.3 degrees C. An additional 0.3 C uncertainty must be added for the last deglaciation and up to +/- 0.4 degrees C for earlier transitions due to age-scale uncertainties in the sea-level reconstructions. Finally, the fingerprint of idealized Dansgaard-Oeschger events in the atmospheric krypton-to-nitrogen ratio is presented. A delta Kr(atm) change of up to 0.34 parts per thousand is simulated for a 2 kyr Dansgaard-Oeschger event, and a change of up to 0.48 parts per thousand is simulated for a 4 kyr event. (C) 2011 Elsevier Ltd. All rights reserved.

Kawamura, K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, Severinghaus JP, Hutterli MA, Nakazawa T, Aoki S, Jouzel J, Raymo ME, Matsumoto K, Nakata H, Motoyama H, Fujita S, Goto-Azuma K, Fujii Y, Watanabe O.  2007.  Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature. 448:912-U4.   10.1038/nature06015   AbstractWebsite

The Milankovitch theory of climate change proposes that glacial interglacial cycles are driven by changes in summer insolation at high northern latitudes(1). The timing of climate change in the Southern Hemisphere at glacial-interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination(2,3), because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores(4,5). This ratio is a proxy for local summer insolation(5), and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores(6-9) and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations(3,10,11).

Petrenko, VV, Severinghaus JP, Brook EJ, Muhle J, Headly M, Harth CM, Schaefer H, Reeh N, Weiss RF, Lowe D, Smith AM.  2008.  A novel method for obtaining very large ancient air samples from ablating glacial ice for analyses of methane radiocarbon. Journal of Glaciology. 54:233-244.   10.3189/002214308784886135   AbstractWebsite

We present techniques for obtaining large (similar to 100 L STP) samples of ancient air for analysis of (14)C of methane ((14)CH(4)) and other trace constituents. Paleoatmospheric (14)CH(4) measurements should constrain the fossil fraction of past methane budgets, as well as provide a definitive test of methane clathrate involvement in large and rapid methane concentration ([CH(4)]) increases that accompanied rapid warming events during the last deglaciation. Air dating to the Younger Dryas-Preboreal and Oldest Dryas-Bolling abrupt climatic transitions was obtained by melt extraction from old glacial ice outcropping at an ablation margin in West Greenland. The outcropping ice and occluded air were dated using a combination of delta(15)N of N(2), delta(18)O of O(2), delta(18)O(ice) and [CH(4)] measurements. The [CH(4)] blank of the melt extractions was <4 ppb. Measurements of delta(18)O and delta(15)N indicated no significant gas isotopic fractionation from handling. Measured Ar/N(2), CFC-11 and CFC-12 in the samples indicated no significant contamination from ambient air. Ar/N(2), Kr/Ar and Xe/Ar ratios in the samples were used to quantify effects of gas dissolution during the melt extractions and correct the sample [CH(4)]. Corrected [CH(4)] is elevated over expected values by up to 132 ppb for most samples, suggesting some in situ CH(4) production in ice at this site.

Caillon, N, Jouzel J, Severinghaus JP, Chappellaz J, Blunier T.  2003.  A novel method to study the phase relationship between Antarctic and Greenland climate. Geophysical Research Letters. 30   10.1029/2003gl017838   AbstractWebsite

A classical method for understanding the coupling between northern and southern hemispheres during millennial-scale climate events is based on the correlation between Greenland and Antarctic ice core records of atmospheric composition. Here we present a new approach based on the use of a single Antarctic ice core in which measurements of methane concentration and inert gas isotopes place constraints on the timing of a rapid climate change in the North and of its Antarctic counterpart. We applied it to the Marine Isotope Stage (MIS) 5d/c transition early in the last glaciation similar to108 ky BP. Our results indicate that the Antarctic temperature increase occurred 2 ky before the methane increase, which is used as a time marker of the warming in the Northern Hemisphere. This result is in agreement with the "bipolar seesaw'' mechanism used to explain the phase relationships documented between 23 and 90 ky BP [Blunier and Brook, 2001].