Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
McConnell, JR, Burke A, Dunbar NW, Kohler P, Thomas JL, Arienzo MM, Chellman NJ, Maselli OJ, Sigl M, Adkins JF, Baggenstos D, Burkhart JF, Brook EJ, Buizert C, Cole-Dai J, Fudge TJ, Knorr G, Graf HF, Grieman MM, Iverson N, McGwire KC, Mulvaney R, Paris G, Rhodes RH, Saltzman ES, Severinghaus JP, Steffensen JP, Taylor KC, Winckler G.  2017.  Synchronous volcanic eruptions and abrupt climate change similar to 17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences of the United States of America. 114:10035-10040.   10.1073/pnas.1705595114   AbstractWebsite

Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until similar to 17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, similar to 192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation similar to 17.7 ka.

Cuffey, KM, Clow GD, Steig EJ, Buizert C, Fudge TJ, Koutnik M, Waddington ED, Alley RB, Severinghaus JP.  2016.  Deglacial temperature history of West Antarctica. Proceedings of the National Academy of Sciences of the United States of America. 113:14249-14254.   10.1073/pnas.1609132113   AbstractWebsite

The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth's climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes' sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3 +/- 1.8 degrees C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.