Export 12 results:
Sort by: Author Title Type [ Year  (Desc)]
Bereiter, B, Kawamura K, Severinghaus JP.  2018.  New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples. Rapid Communications in Mass Spectrometry. 32:801-814.   10.1002/rcm.8099   AbstractWebsite

RationaleThe global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores, can be used to reconstruct past mean ocean temperatures (MOTs). Here we introduce two successively developed methods to measure these parameters with a sufficient precision to provide new constraints on past changes in MOT. MethodsThe air from an 800-g ice sample - containing roughly 80mL STP air - is extracted and processed to be analyzed on two independent dual-inlet isotope ratio mass spectrometers. The primary isotope ratios (N-15, Ar-40 and Kr-86 values) are obtained with precisions in the range of 1 per meg (0.001) per mass unit. The three elemental ratio values Kr/N-2, Xe/N-2 and Xe/Kr are obtained using sequential (non-simultaneous) peak-jumping, reaching precisions in the range of 0.1-0.3. ResultsThe latest version of the method achieves a 30% to 50% better precision on the elemental ratios and a twofold better sample throughput than the previous one. The method development uncovered an unexpected source of artefactual gas fractionation in a closed system that is caused by adiabatic cooling and warming of gases (termed adiabatic fractionation) - a potential source of measurement artifacts in other methods. ConclusionsThe precisions of the three elemental ratios Kr/N-2, Xe/N-2 and Xe/Kr - which all contain the same MOT information - suggest smaller uncertainties for reconstructed MOTs (+/- 0.3-0.1 degrees C) than previous studies have attained. Due to different sensitivities of the noble gases to changes in MOT, Xe/N-2 provides the best constraints on the MOT under the given precisions followed by Xe/Kr, and Kr/N-2; however, using all of them helps to detect methodological artifacts and issues with ice quality.

Orsi, AJ, Kawamura K, Fegyveresi JM, Headly MA, Alley RB, Severinghaus JP.  2015.  Differentiating bubble-free layers from melt layers in ice cores using noble gases. Journal of Glaciology. 61:585-594.   10.3189/2015JoG14J237   AbstractWebsite

Melt layers are clear indicators of extreme summer warmth on polar ice caps. The visual identification of refrozen meltwater as clear bubble-free layers cannot be used to study some past warm periods, because, in deeper ice, bubbles are lost to clathrate formation. We present here a reliable method to detect melt events, based on the analysis of Kr/Ar and Xe/Ar ratios in ice cores, and apply it to the detection of melt in clathrate ice from the Eemian at NEEM, Greenland. Additionally, melt layers in ice cores can compromise the integrity of the gas record by dissolving soluble gases, or by altering gas transport in the firn, which affects the gas chronology. We find that the easily visible 1 mm thick bubble-free layers in the WAIS Divide ice core do not contain sufficient melt to alter the gas composition in the core, and do not cause artifacts or discontinuities in the gas chronology. The presence of these layers during winter, and the absence of anomalies in soluble gases, suggests that these layers can be formed by processes other than refreezing of meltwater. Consequently, the absence of bubbles in thin crusts is not in itself proof of a melt event.

Mitchell, LE, Buizert C, Brook EJ, Breton DJ, Fegyveresi J, Baggenstos D, Orsi A, Severinghaus J, Alley RB, Albert M, Rhodes RH, McConnell JR, Sigl M, Maselli O, Gregory S, Ahn J.  2015.  Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research-Atmospheres. 120:2558-2574.   10.1002/2014jd022766   AbstractWebsite

Interpretation of ice core trace gas records depends on an accurate understanding of the processes that smooth the atmospheric signal in the firn. Much work has been done to understand the processes affecting air transport in the open pores of the firn, but a paucity of data from air trapped in bubbles in the firn-ice transition region has limited the ability to constrain the effect of bubble closure processes. Here we present high-resolution measurements of firn density, methane concentrations, nitrogen isotopes, and total air content that show layering in the firn-ice transition region at the West Antarctic Ice Sheet (WAIS) Divide ice core site. Using the notion that bubble trapping is a stochastic process, we derive a new parameterization for closed porosity that incorporates the effects of layering in a steady state firn modeling approach. We include the process of bubble trapping into an open-porosity firn air transport model and obtain a good fit to the firn core data. We find that layering broadens the depth range over which bubbles are trapped, widens the modeled gas age distribution of air in closed bubbles, reduces the mean gas age of air in closed bubbles, and introduces stratigraphic irregularities in the gas age scale that have a peak-to-peak variability of 10 years at WAIS Divide. For a more complete understanding of gas occlusion and its impact on ice core records, we suggest that this experiment be repeated at sites climatically different from WAIS Divide, for example, on the East Antarctic plateau.

Orsi, AJ, Cornuelle BD, Severinghaus JP.  2014.  Magnitude and temporal evolution of Dansgaard-Oeschger event 8 abrupt temperature change inferred from nitrogen and argon isotopes in GISP2 ice using a new least-squares inversion. Earth and Planetary Science Letters. 395:81-90.   10.1016/j.epsl.2014.03.030   AbstractWebsite

Polar temperature is often inferred from water isotopes in ice cores. However, non-temperature effects on 3180 are important during the abrupt events of the last glacial period, such as changes in the seasonality of precipitation, the northward movement of the storm track, and the increase in accumulation. These effects complicate the interpretation of 8180 as a temperature proxy. Here, we present an independent surface temperature reconstruction, which allows us to test the relationship between delta O-18(ice) and temperature, during Dansgaard-Oeschger event 8, 38.2 thousand yrs ago using new delta N-15 and delta Ar-40 data from the GISP2 ice core in Greenland. This temperature reconstruction relies on a new inversion of inert gas isotope data using generalized least-squares, and includes a robust uncertainty estimation. We find that both temperature and delta O-18 increased in two steps of 20 and 140 yrs, with an overall amplitude of 11.80 +/- 1.8 degrees C between the stadial and interstadial centennial-mean temperature. The coefficient alpha = d delta O-18/dT changes with each time-segment, which shows that non-temperature sources of fractionation have a significant contribution to the delta O-18 signal. When measured on century-averaged values, we find that alpha = d delta O-18/dT = 0.32 +/- 0.06%(0)/degrees C, which is similar to the glacial/Holocene value of 0.328%(o)/degrees C. (C) 2014 Elsevier B.V. All rights reserved.

Petrenko, VV, Severinghaus JP, Smith AM, Riedel K, Baggenstos D, Harth C, Orsi A, Hua Q, Franz P, Takeshita Y, Brailsford GW, Weiss RF, Buizert C, Dickson A, Schaefer H.  2013.  High-precision C-14 measurements demonstrate production of in situ cosmogenic (CH4)-C-14 and rapid loss of in situ cosmogenic (CO)-C-14 in shallow Greenland firn. Earth and Planetary Science Letters. 365:190-197.   10.1016/j.epsl.2013.01.032   AbstractWebsite

Measurements of radiocarbon (C-14) in carbon dioxide (CO2), methane (CH4) and carbon monoxide (CO) from glacial ice are potentially useful for absolute dating of ice cores, studies of the past atmospheric CH4 budget and for reconstructing the past cosmic ray flux and solar activity. Interpretation of C-14 signals in ice is complicated by the fact that the two major C-14 components-trapped atmospheric and in situ cosmogenic-are present in a combined form, as well as by a very limited understanding of the in situ component. This study measured (CH4)-C-14 and (CO)-C-14 content in glacial firn with unprecedented precision to advance understanding of the in situ C-14 component. (CH4)-C-14 and (CO)-C-14 were melt-extracted on site at Summit, Greenland from three very large (similar to 1000 kg each) replicate samples of firn that spanned a depth range of 3.6-5.6 m. Non-cosmogenic C-14 contributions were carefully characterized through simulated extractions and a suite of supporting measurements. In situ cosmogenic (CO)-C-14 was quantified to better than +/- 0.6 molecules g(-1) ice, improving on the precision of the best prior ice (CO)-C-14 measurements by an order of magnitude. The (CO)-C-14 measurements indicate that most (>99%) of the in situ cosmogenic C-14 is rapidly lost from shallow Summit firn to the atmosphere. Despite this rapid C-14 loss, our measurements successfully quantified (CH4)-C-14 in the retained fraction of cosmogenic C-14 (to +/- 0.01 molecules g(-1) ice or better), and demonstrate for the first time that a significant amount of (CH4)-C-14 is produced by cosmic rays in natural ice. This conclusion increases the confidence in the results of an earlier study that used measurements of (CH4)-C-14 in glacial ice to show that wetlands were the likely main driver of the large and rapid atmospheric CH4 increase approximately 1 1.6 kyr ago. (C) 2013 Elsevier B.V. All rights reserved.

Kobashi, T, Severinghaus JP, Kawamura K.  2008.  Argon and nitrogen isotopes of trapped air in the GISP2 ice core during the Holocene epoch (0-11,500 B.P.): Methodology and implications for gas loss processes. Geochimica Et Cosmochimica Acta. 72:4675-4686.   10.1016/j.gca.2008.07.006   AbstractWebsite

Argon and nitrogen isotopes of air in polar ice cores provide constraints on past temperature and firn thickness, with relevance to past climate. We developed a method to simultaneously measure nitrogen and argon isotopes in trapped air from the same sample of polar ice. This method reduces the time required for analysis, allowing large numbers of measurements. We applied this method to the entire Holocene sequence of the GISP2 ice core (82.37-1692.22 m) with a 10-20 year sampling interval (670 depths). delta(40)Ar and delta(15)N show elevated values in the oldest part of the dataset, consistent with a thicker firn layer and increased temperature gradient in the firn due to the legacy of the abrupt warming at the end of the Younger Dryas interval and the gradual warming during the Preboreal interval (11.5-10.0 ka). The Preboreal Oscillation and the 8.2k event are clearly recorded. The data show remarkable stability after the 8.2k event. Available data suggests that post-coring gas loss involves two distinct types of fractionation. First, smaller molecules with less than a certain threshold size leak through the ice lattice with little isotopic fractionation. Second, gas composition changes via gas loss through microcracks, which induces isotopic fractionation. These two gas loss processes can explain most trends in our data and in other ice core records. (C) 2008 Elsevier Ltd. All rights reserved.

Headly, MA, Severinghaus JP.  2007.  A method to measure Kr/N-2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd008317   AbstractWebsite

We describe a new method for precise measurement of Kr/N-2 ratios in air bubbles trapped in ice cores and the first reconstruction of atmospheric Kr/N-2 during the last glacial maximum (LGM) similar to 20,000 years ago. After gravitational correction, the Kr/N-2 record in ice cores should represent the atmospheric ratio, which in turn should reflect past ocean temperature change due to the dependence of gas solubility on temperature. The increase in krypton inventory in the glacial ocean due to higher gas solubility in colder water causes a decrease in the atmospheric inventory of krypton. Assuming Kr and N-2 inventories in the ocean-atmosphere system are conserved, we use a mass balance model to estimate a mean ocean temperature change between the LGM and today. We measured Kr/N-2 in air bubbles in Greenland (GISP2) ice from the late Holocene and LGM, using the present atmosphere as a standard. The late Holocene delta Kr/N-2 means from two sets of measurements are not different from zero (+0.07 +/- 0.30 parts per thousand and -0.14 +/- 0.93 parts per thousand), as expected from the relatively constant climate of the last millennium. The mean delta Kr/N-2 in air bubbles from the LGM is -1.34 +/- 0.37 parts per thousand. Using the mass balance model, we estimate that the mean temperature change between the LGM ocean and today's ocean was 2.7 +/- 0.6 degrees C. Although this error is large compared to the observed change, this finding is consistent with most previous estimates of LGM deep ocean temperature based on foraminiferal delta O-18 and sediment pore water delta O-18 and chlorinity.

Huber, C, Beyerle U, Leuenberger M, Schwander J, Kipfer R, Spahni R, Severinghaus JP, Weiler K.  2006.  Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth and Planetary Science Letters. 243:61-73.   10.1016/j.epsl.2005.12.036   AbstractWebsite

We present elemental and isotopic measurements of noble gases (He, Ne, Ar, Kr, and Xe), oxygen and nitrogen of firn air from two sites. The first set of samples was taken in 1998 at the summit of the Devon Ice Cap in the eastern part of Devon Island. The second set was taken in 2001 at NGRIP location (North Greenland). He and Ne are heavily enriched relative to Ar with respect to the atmosphere in the air near the close-off depth at around 50-70 in. The enrichment increases with depth and reaches the maximum value in the deepest samples just above the zone of impermeable ice where no free air could be extracted anymore. Similarly, elemental ratios of O(2)/N(2), O(2)/Ar and Ar/N(2) are increasing with depth. In contrast but in line with expectations, isotopic ratios of (15)N/(14)N, (18)O/(16)O, and (36)Ar/(40)Ar show no significant enrichment near the close-off depth. The observed isotopic ratios in the firn air column can be explained within the uncertainty ranges by the well-known processes of gravitational enrichment and thermal diffusion. To explain the elemental ratios, however, an additional fractionation process during bubble inclusion has to be considered. We implemented this additional process into our firn air model. The fractionation factors were found by fitting model profiles to the data. We found a very similar close-off fractionation behavior for the different molecules at both sites. For smaller gas species (mainly He and Ne) the fractionation factors are linearly correlated to the molecule size, whereas for diameters greater than about 3.6 A the fractionation seems to be significantly smaller or even negligible. An explanation for this size dependent fractionation process could be gas diffusion through the ice lattice. At Devon Island the enrichment at the bottom of the firn air column is about four times higher compared to NGRIP. We explain this by lower firn diffusivity at Devon Island, most probably due to melt layers, resulting in significantly reduced back diffusion of the excess gas near the close-off depth. The results of this study considerably increase the understanding of the processes occurring during air bubble inclusion near the close-off depth in firn and can help to improve the interpretation of direct firn air measurements, as well as air bubble measurements in ice cores, which are used in numerous studies as paleo proxies. (c) 2006 Elsevier B.V. All rights reserved.

Grachev, AM, Severinghaus JP.  2005.  A revised +10 +/- 4 degrees C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants. Quaternary Science Reviews. 24:513-519.   10.1016/j.quascirev.2004.10.016   AbstractWebsite

We revisit the portion of (Nature 391 (1998) 141) devoted to the abrupt temperature increase reconstruction at the Younger Dryas/Preboreal transition. The original estimate of + 5 to + 10 degrees C abrupt warming is revised to + 10 +/- 4 degrees C. The gas isotope data from the original work were employed, combined with recently measured precise air thermal diffusion constants (Geochim. Cosmochim. Acta 67 (2003a) 345; J. Phys. Chem. 23A (2003b) 4636). The new constants allow a robust interpretation of the gas isotope signal in terms of temperature change. This was not possible at the time of the original work, when no air constants were available. Three quasi-independent approaches employed in this work all give the same result of a + 10 degrees C warming in several decades or less. The new result provides a firm target for climate models that attempt to predict future climates. (c) 2005 Elsevier Ltd. All rights reserved.

Brook, EJ, White JWC, Schilla ASM, Bender ML, Barnett B, Severinghaus JP, Taylor KC, Alley RB, Steig EJ.  2005.  Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period. Quaternary Science Reviews. 24:1333-1343.   10.1016/j.quascirev.2005.02.002   AbstractWebsite

Using atmospheric methane and the isotopic composition of O-2 as correlation tools, we place the 6D record of ice from the Siple Dome (West Antarctica) ice core on a precise common chronology with the GISP2 (Greenland) ice core for the period from 9 to 57 ka. The onset of major millennial warming events in Siple Dome preceded major abrupt warmings in Greenland, and the pattern of millennial change at Siple Dome was broadly similar, though not identical, to that previously observed for the Byrd ice core (also in West Antarctica). The addition of Siple Dome to the database of well-dated Antarctic paleoclimate records supports the case for a coherent regional pattern of millennial-scale climate change in Antarctica during much of the last ice age and glacial-interglacial transition.

Landais, A, Caillon N, Severinghaus J, Barnola JM, Goujon C, Jouzel J, Masson-Delmotte V.  2004.  Isotopic measurements of air trapped in ice to quantify temperature changes. Comptes Rendus Geoscience. 336:963-970.   10.1016/j.crte.2004.03.013   AbstractWebsite

Isotopic measurements of air trapped in ice to quantify temperature changes. Isotopic measurements in polar ice core have shown a succession of rapid warming periods during the last glacial period over Greenland. However, this method underestimates the surface temperature variations. A new method based on gas thermal diffusion in the firn manages to quantify surface temperature variations through associated isotopic fractionations. We developed a method to extract air from the ice and to perform isotopic measurements to reduce analytical uncertainties to 0.006 and 0.020parts per thousand for delta(15)N and delta(40)Ar. It led to a 16 +/- 1.5degreesC surface temperature variation during a rapid warming (-70000 yr). (C) 2004 Academie des sciences. Publie par Elsevier SAS. Tous droits reserves.

Severinghaus, JP, Sowers T, Brook EJ, Alley RB, Bender ML.  1998.  Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature. 391:141-146.   10.1038/34346   AbstractWebsite

Rapid temperature change fractionates gas Isotopes in unconsolidated snow, producing a signal that is preserved in trapped air bubbles as the snow forms ice, The fractionation of nitrogen and argon isotopes at the end of the Younger Dryas cold interval, recorded in Greenland ice, demonstrates that warming at this time was abrupt. This warming coincides with the onset of a prominent rise in atmospheric methane concentration, indicating that the climate change was synchronous (within a few decades) over a region of at least hemispheric extent, and providing constraints on previously proposed mechanisms of climate change at this time, The depth of the nitrogen-isotope signal relative to the depth of the climate change recorded in the Ice matrix indicates that, during the Younger Dryas, the summit of Greenland was 15 +/- 3 degrees C colder than today.