Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Orsi, AJ, Kawamura K, Masson-Delmotte V, Fettweis X, Box JE, Dahl-Jensen D, Clow GD, Landais A, Severinghaus JP.  2017.  The recent warming trend in North Greenland. Geophysical Research Letters. 44:6235-6243.   10.1002/2016gl072212   AbstractWebsite

The Arctic is among the fastest warming regions on Earth, but it is also one with limited spatial coverage of multidecadal instrumental surface air temperature measurements. Consequently, atmospheric reanalyses are relatively unconstrained in this region, resulting in a large spread of estimated 30 year recent warming trends, which limits their use to investigate the mechanisms responsible for this trend. Here we present a surface temperature reconstruction over 1982-2011 at NEEM (North Greenland Eemian Ice Drilling Project, 51 degrees W, 77 degrees N), in North Greenland, based on the inversion of borehole temperature and inert gas isotope data. We find that NEEM has warmed by 2.7 +/- 0.33 degrees C over the past 30 years, from the long-term 1900-1970 average of -28.55 +/- 0.29 degrees C. The warming trend is principally caused by an increase in downward longwave heat flux. Atmospheric reanalyses underestimate this trend by 17%, underlining the need for more in situ observations to validate reanalyses.

2016
Cuffey, KM, Clow GD, Steig EJ, Buizert C, Fudge TJ, Koutnik M, Waddington ED, Alley RB, Severinghaus JP.  2016.  Deglacial temperature history of West Antarctica. Proceedings of the National Academy of Sciences of the United States of America. 113:14249-14254.   10.1073/pnas.1609132113   AbstractWebsite

The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth's climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes' sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3 +/- 1.8 degrees C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

2009
Grachev, AM, Brook EJ, Severinghaus JP, Pisias NG.  2009.  Relative timing and variability of atmospheric methane and GISP2 oxygen isotopes between 68 and 86 ka. Global Biogeochemical Cycles. 23   10.1029/2008gb003330   AbstractWebsite

The global biogeochemical cycle of methane has received wide attention because of methane's role as a greenhouse gas. Measurements of methane in air trapped in Greenland ice cores provide a high-resolution record of methane levels in the atmosphere over the past similar to 100 ka, providing clues about what controls the methane cycle on geologic timescales. Remarkable similarity between local temperature recorded in Greenland ice cores and changes in global methane concentrations has been noted in previous studies, with the inference that the local temperature variations have global significance, but the resolution of sampling and measurement precision limited fine-scale comparison of these variables. In this work a higher-precision (similar to 2 ppb) methane data set was obtained from the Greenland Ice Sheet Project 2 (GISP2) ice core for the time interval between 86 and 68 ka, encompassing three large abrupt warming events early in the last glacial period: Dansgaard-Oeschger (D-O) events 19, 20, and 21. The new data set consists of duplicate measurements at 158 depths, with average time resolution of 120 years. Such detailed measurements over D-O 21, the longest in Greenland records, have not yet been reported for other ice cores. The new data set documents short-term variability (similar to 20 ppb typical amplitude), which is remarkably persistent, and in many cases similar features are observed in the most detailed published delta(18)O(ice) record. High-precision GISP2 delta(15)N data show that changes in Greenland temperature are synchronous with the methane variations at the onset of D-O events 19, 20, and 21, supporting previous results from the Greenland Ice Core Project ice core for D-O 19 and 20. Cross-spectral analysis quantifies the extremely close similarity between the new methane record and the delta(18)O(ice) record. Because methane sources are widely distributed over the globe, this work further validates delta(18)O(ice) at Greenland summit as a geographically broad climate indicator on millennial to multicentennial timescales.