Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Bauska, TK, Brook EJ, Marcott SA, Baggenstos D, Shackleton S, Severinghaus JP, Petrenko VV.  2018.  Controls on millennial-scale atmospheric CO2 variability during the last glacial period. Geophysical Research Letters. 45:7731-7740.   10.1029/2018gl077881   AbstractWebsite

Changes in atmospheric CO2 on millennial-to-centennial timescales are key components of past climate variability during the last glacial and deglacial periods (70-10 ka), yet the sources and mechanisms responsible for the CO2 fluctuations remain largely obscure. Here we report the C-13/C-12 ratio of atmospheric CO2 during a key interval of the last glacial period at submillennial resolution, with coeval histories of atmospheric CO2, CH4, and N2O concentrations. The carbon isotope data suggest that the millennial-scale CO2 variability in Marine Isotope Stage 3 is driven largely by changes in the organic carbon cycle, most likely by sequestration of respired carbon in the deep ocean. Centennial-scale CO2 variations, distinguished by carbon isotope signatures, are associated with both abrupt hydrological change in the tropics (e.g., Heinrich events) and rapid increases in Northern Hemisphere temperature (Dansgaard-Oeschger events). These events can be linked to modes of variability during the last deglaciation, thus suggesting that drivers of millennial and centennial CO2 variability during both periods are intimately linked to abrupt climate variability. Plain Language Summary Ice cores provide unique records of variations in atmospheric CO2 prior to the instrumental era. While it is clear that changes in atmospheric CO2 played a significant role in driving past climate change, it is unclear what in turn drove changes in atmospheric CO2. Here we investigate enigmatic changes in atmospheric CO2 levels during an interval of the last glacial period (similar to 50,000 to 35,000 years ago) that are associated with abrupt changes in polar climate. To determine the sources and sinks for atmospheric CO2, we measured the stable isotopes of carbon in CO2 and found that the primary source of carbon to the atmosphere was an organic carbon reservoir. Most likely, this carbon was sourced from a deep ocean reservoir that waxed and waned following changes in either the productivity of the surface ocean or stratification of the deep ocean. We also found that atmospheric CO2 can change on the centennial timescale during abrupt climate transitions in the Northern Hemisphere. This observation adds to a growing body of evidence that abrupt changes in atmospheric CO2 are an important component of past carbon cycle variability.

Baggenstos, D, Severinghaus JP, Mulvaney R, McConnell JR, Sigl M, Maselli O, Petit JR, Grente B, Steig EJ.  2018.  A horizontal ice core from Taylor Glacier, its implications for Antarctic climate history, and an improved Taylor Dome ice core time scale. Paleoceanography and Paleoclimatology. 33:778-794.   10.1029/2017pa003297   AbstractWebsite

Ice core records from Antarctica show mostly synchronous temperature variations during the last deglacial transition, an indication that the climate of the entire continent reacted as one unit to the global changes. However, a record from the Taylor Dome ice core in the Ross Sea sector of East Antarctica has been suggested to show a rapid warming, similar in style and synchronous with the Oldest Dryas-Bolling warming in Greenland. Since publication of the Taylor Dome record, a number of lines of evidence have suggested that this interpretation is incorrect and reflects errors in the underlying time scale. The issues raised regarding the dating of Taylor Dome currently linger unresolved, and the original time scale remains the de facto chronology. We present new water isotope and chemistry data from nearby Taylor Glacier to resolve the confusion surrounding the Taylor Dome time scale. We find that the Taylor Glacier record is incompatible with the original interpretation of the Taylor Dome ice core, showing that the warming in the area was gradual and started at similar to 18 ka BP (before 1950) as seen in other East Antarctic ice cores. We build a consistent, up-to-date Taylor Dome chronology from 0 to 60 ka BP by combining new and old age markers based on synchronization to other ice core records. The most notable feature of the new TD2015 time scale is a gas age-ice age difference of up to 12,000 years during the Last Glacial Maximum, by far the largest ever observed.

Birner, B, Buizert C, Wagner TJW, Severinghaus JP.  2018.  The influence of layering and barometric pumping on firn air transport in a 2-D model. Cryosphere. 12:2021-2037.   10.5194/tc-12-2021-2018   AbstractWebsite

Ancient air trapped in ice core bubbles has been paramount to developing our understanding of past climate and atmospheric composition. Before air bubbles become isolated in ice, the atmospheric signal is altered in the firn column by transport processes such as advection and diffusion. However, the influence of low-permeability layers and barometric pumping (driven by surface pressure variability) on firn air transport is not well understood and is not readily captured in conventional one-dimensional (1-D) firn air models. Here we present a two-dimensional (2-D) trace gas advection-diffusion-dispersion model that accounts for discontinuous horizontal layers of reduced permeability. We find that layering or barometric pumping individually yields too small a reduction in gravitational settling to match observations. In contrast, when both effects are active, the model's gravitational fractionation is suppressed as observed. Layering focuses airflows in certain regions in the 2-D model, which acts to amplify the dispersive mixing resulting from barometric pumping. Hence, the representation of both factors is needed to obtain a realistic emergence of the lock-in zone. In contrast to expectations, we find that the addition of barometric pumping in the layered 2-D model does not substantially change the differential kinetic fractionation of fast-and slow-diffusing trace gases. Like 1-D models, the 2-D model substantially underestimates the amount of differential kinetic fractionation seen in actual observations, suggesting that further subgrid-scale processes may be missing in the current generation of firn air transport models. However, we find robust scaling relationships between kinetic isotope fractionation of different noble gas isotope and elemental ratios. These relationships may be used to correct for kinetic fractionation in future high-precision ice core studies and can amount to a bias of up to 0.45 degrees C in noble-gas-based mean ocean temperature reconstructions at WAIS Divide, Antarctica.

Bertler, NAN, Conway H, Dahl-Jensen D, Emanuelsson DB, Winstrup M, Vallelonga PT, Lee JE, Brook EJ, Severinghaus JP, Fudge TJ, Keller ED, Baisden WT, Hindmarsh RCA, Neff PD, Blunier T, Edwards R, Mayewski PA, Kipfstuhl S, Buizert C, Canessa S, Dadic R, Kjaer HA, Kurbatov A, Zhang DQ, Waddington ED, Baccolo G, Beers T, Brightley HJ, Carter L, Clemens-Sewall D, Ciobanu VG, Delmonte B, Eling L, Ellis A, Ganesh S, Golledge NR, Haines S, Handley M, Hawley RL, Hogan CM, Johnson KM, Korotkikh E, Lowry DP, Mandeno D, McKay RM, Menking JA, Naish TR, Noerling C, Ollive A, Orsi A, Proemse BC, Pyne AR, Pyne RL, Renwick J, Scherer RP, Semper S, Simonsen M, Sneed SB, Steig EJ, Tuohy A, Venugopal AU, Valero-Delgado F, Venkatesh J, Wang FT, Wang SM, Winski DA, Winton VHL, Whiteford A, Xiao CD, Yang J, Zhang X.  2018.  The Ross Sea Dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years. Climate of the Past. 14:193-214.   10.5194/cp-14-193-2018   AbstractWebsite

High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

Baggenstos, D, Bauska TK, Severinghaus JP, Lee JE, Schaefer H, Buizert C, Brook EJ, Shackleton S, Petrenko VV.  2017.  Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Climate of the Past. 13:943-958.   10.5194/cp-13-943-2017   AbstractWebsite

Old ice for paleo-environmental studies, traditionally accessed through deep core drilling on domes and ridges on the large ice sheets, can also be retrieved at the surface from ice sheet margins and blue ice areas. The practically unlimited amount of ice available at these sites satisfies a need in the community for studies of trace components requiring large sample volumes. For margin sites to be useful as ancient ice archives, the ice stratigraphy needs to be understood and age models need to be established. We present measurements of trapped gases in ice from Taylor Glacier, Antarctica, to date the ice and assess the completeness of the stratigraphic section. Using delta O-18 of O-2 and methane concentrations, we unambiguously identify ice from the last glacial cycle, covering every climate interval from the early Holocene to the penultimate interglacial. A high-resolution transect reveals the last deglaciation and the Last Glacial Maximum (LGM) in detail. We observe large-scale deformation in the form of folding, but individual stratigraphic layers do not appear to have undergone irregular thinning. Rather, it appears that the entire LGM-deglaciation sequence has been transported from the interior of the ice sheet to the surface of Taylor Glacier relatively undisturbed. We present an age model that builds the foundation for gas studies on Taylor Glacier. A comparison with the Taylor Dome ice core confirms that the section we studied on Taylor Glacier is better suited for paleo-climate reconstructions of the LGM due to higher accumulation rates.