Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Baggenstos, D, Bauska TK, Severinghaus JP, Lee JE, Schaefer H, Buizert C, Brook EJ, Shackleton S, Petrenko VV.  2017.  Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Climate of the Past. 13:943-958.   10.5194/cp-13-943-2017   AbstractWebsite

Old ice for paleo-environmental studies, traditionally accessed through deep core drilling on domes and ridges on the large ice sheets, can also be retrieved at the surface from ice sheet margins and blue ice areas. The practically unlimited amount of ice available at these sites satisfies a need in the community for studies of trace components requiring large sample volumes. For margin sites to be useful as ancient ice archives, the ice stratigraphy needs to be understood and age models need to be established. We present measurements of trapped gases in ice from Taylor Glacier, Antarctica, to date the ice and assess the completeness of the stratigraphic section. Using delta O-18 of O-2 and methane concentrations, we unambiguously identify ice from the last glacial cycle, covering every climate interval from the early Holocene to the penultimate interglacial. A high-resolution transect reveals the last deglaciation and the Last Glacial Maximum (LGM) in detail. We observe large-scale deformation in the form of folding, but individual stratigraphic layers do not appear to have undergone irregular thinning. Rather, it appears that the entire LGM-deglaciation sequence has been transported from the interior of the ice sheet to the surface of Taylor Glacier relatively undisturbed. We present an age model that builds the foundation for gas studies on Taylor Glacier. A comparison with the Taylor Dome ice core confirms that the section we studied on Taylor Glacier is better suited for paleo-climate reconstructions of the LGM due to higher accumulation rates.

2014
Orsi, AJ, Cornuelle BD, Severinghaus JP.  2014.  Magnitude and temporal evolution of Dansgaard-Oeschger event 8 abrupt temperature change inferred from nitrogen and argon isotopes in GISP2 ice using a new least-squares inversion. Earth and Planetary Science Letters. 395:81-90.   10.1016/j.epsl.2014.03.030   AbstractWebsite

Polar temperature is often inferred from water isotopes in ice cores. However, non-temperature effects on 3180 are important during the abrupt events of the last glacial period, such as changes in the seasonality of precipitation, the northward movement of the storm track, and the increase in accumulation. These effects complicate the interpretation of 8180 as a temperature proxy. Here, we present an independent surface temperature reconstruction, which allows us to test the relationship between delta O-18(ice) and temperature, during Dansgaard-Oeschger event 8, 38.2 thousand yrs ago using new delta N-15 and delta Ar-40 data from the GISP2 ice core in Greenland. This temperature reconstruction relies on a new inversion of inert gas isotope data using generalized least-squares, and includes a robust uncertainty estimation. We find that both temperature and delta O-18 increased in two steps of 20 and 140 yrs, with an overall amplitude of 11.80 +/- 1.8 degrees C between the stadial and interstadial centennial-mean temperature. The coefficient alpha = d delta O-18/dT changes with each time-segment, which shows that non-temperature sources of fractionation have a significant contribution to the delta O-18 signal. When measured on century-averaged values, we find that alpha = d delta O-18/dT = 0.32 +/- 0.06%(0)/degrees C, which is similar to the glacial/Holocene value of 0.328%(o)/degrees C. (C) 2014 Elsevier B.V. All rights reserved.

2008
Kobashi, T, Severinghaus JP, Kawamura K.  2008.  Argon and nitrogen isotopes of trapped air in the GISP2 ice core during the Holocene epoch (0-11,500 B.P.): Methodology and implications for gas loss processes. Geochimica Et Cosmochimica Acta. 72:4675-4686.   10.1016/j.gca.2008.07.006   AbstractWebsite

Argon and nitrogen isotopes of air in polar ice cores provide constraints on past temperature and firn thickness, with relevance to past climate. We developed a method to simultaneously measure nitrogen and argon isotopes in trapped air from the same sample of polar ice. This method reduces the time required for analysis, allowing large numbers of measurements. We applied this method to the entire Holocene sequence of the GISP2 ice core (82.37-1692.22 m) with a 10-20 year sampling interval (670 depths). delta(40)Ar and delta(15)N show elevated values in the oldest part of the dataset, consistent with a thicker firn layer and increased temperature gradient in the firn due to the legacy of the abrupt warming at the end of the Younger Dryas interval and the gradual warming during the Preboreal interval (11.5-10.0 ka). The Preboreal Oscillation and the 8.2k event are clearly recorded. The data show remarkable stability after the 8.2k event. Available data suggests that post-coring gas loss involves two distinct types of fractionation. First, smaller molecules with less than a certain threshold size leak through the ice lattice with little isotopic fractionation. Second, gas composition changes via gas loss through microcracks, which induces isotopic fractionation. These two gas loss processes can explain most trends in our data and in other ice core records. (C) 2008 Elsevier Ltd. All rights reserved.

2007
Aciego, SM, Cuffey KM, Kavanaugh JL, Morse DL, Severinghaus JP.  2007.  Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica. Quaternary Research. 68:303-313.   10.1016/j.yqres.2007.07.013   AbstractWebsite

Ice exposed in ablation zones of ice sheets can be a valuable source of samples for paleoclimate studies and information about long-term ice dynamics. We report a 28-km long stable isotope sampling transect along a flowline on lower Taylor Glacier, Antarctica, and show that ice from the last glacial period is exposed here over tens of kilometers. Gas isotope analyses on a small number of samples confirm our age hypothesis. These chronostratigraphic data contain information about past ice dynamics and in particular should be sensitive to the longitudinal strain rate on the north flank of Taylor Dome, averaged over millennia. The imprint of climatic changes on ice dynamics may be discernible in these data. (c) 2007 University of Washington. All rights reserved.