Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2008
Kobashi, T, Severinghaus JP, Barnola JM.  2008.  4 +/- 1.5 degrees C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice. Earth and Planetary Science Letters. 268:397-407.   10.1016/j.epsl.2008.01.032   AbstractWebsite

Nitrogen and argon isotopes in air trapped in a Greenland ice core (GISP2) show two prominent peaks in the interval 11,800-10,800 B.P., which indicate two large abrupt warming events. The first abrupt wanning (10 +/- 4 degrees C) is the widely documented event at the end of the Younger Dryas. Here, we report on the second abrupt warming (4 +/- 1.5 degrees C), which occurred at the end of a short lived cooler interval known as the Preboreal Oscillation (11,270 +/- 30 B.P.). A rapid snow accumulation increase suggests that the climatic transition may have occurred within a few years. The character of the Preboreal Oscillation and the subsequent abrupt warming is similar to the Dansgaard-Oeschger (D/O) events in the last glacial period, suggestive of a common mechanism, but different from another large climate change at 8,200 B.P., in which cooling was abrupt but subsequent warming was gradual. The large abrupt warming at 11,270 B.P. may be considered to be the final D/O event prior to the arrival of the present stable and warm epoch. (c) 2008 Elsevier B.V. All rights reserved.

1999
Severinghaus, JP, Brook EJ.  1999.  Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science. 286:930-934.   10.1126/science.286.5441.930   AbstractWebsite

The last glacial period was terminated by an abrupt warming event in the North Atlantic similar to 15,000 years before the present, and warming events of similar age have been reported from Low Latitudes. Understanding the mechanism of this termination requires that the precise relative timing of abrupt climate warming in the tropics versus the North Atlantic be known. Nitrogen and argon isotopes in trapped air in Greenland ice show that the Greenland Summit warmed 9 +/- 3 degrees C over a period of several decades, beginning 14,672 years ago. Atmospheric methane concentrations rose abruptly over a similar to 50-year period and began their increase 20 to 30 years after the onset of the abrupt Greenland warming. These data suggest that tropical climate became warmer or wetter (or both) similar to 20 to 80 years after the onset of Greenland warming, supporting a North Atlantic rather than a tropical trigger for the climate event.