Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Mitchell, LE, Buizert C, Brook EJ, Breton DJ, Fegyveresi J, Baggenstos D, Orsi A, Severinghaus J, Alley RB, Albert M, Rhodes RH, McConnell JR, Sigl M, Maselli O, Gregory S, Ahn J.  2015.  Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research-Atmospheres. 120:2558-2574.   10.1002/2014jd022766   AbstractWebsite

Interpretation of ice core trace gas records depends on an accurate understanding of the processes that smooth the atmospheric signal in the firn. Much work has been done to understand the processes affecting air transport in the open pores of the firn, but a paucity of data from air trapped in bubbles in the firn-ice transition region has limited the ability to constrain the effect of bubble closure processes. Here we present high-resolution measurements of firn density, methane concentrations, nitrogen isotopes, and total air content that show layering in the firn-ice transition region at the West Antarctic Ice Sheet (WAIS) Divide ice core site. Using the notion that bubble trapping is a stochastic process, we derive a new parameterization for closed porosity that incorporates the effects of layering in a steady state firn modeling approach. We include the process of bubble trapping into an open-porosity firn air transport model and obtain a good fit to the firn core data. We find that layering broadens the depth range over which bubbles are trapped, widens the modeled gas age distribution of air in closed bubbles, reduces the mean gas age of air in closed bubbles, and introduces stratigraphic irregularities in the gas age scale that have a peak-to-peak variability of 10 years at WAIS Divide. For a more complete understanding of gas occlusion and its impact on ice core records, we suggest that this experiment be repeated at sites climatically different from WAIS Divide, for example, on the East Antarctic plateau.

Brook, EJ, Severinghaus JP.  2011.  Methane and megafauna. Nature Geoscience. 4:271-272.   10.1038/ngeo1140   AbstractWebsite
Severinghaus, JP, Albert MR, Courville ZR, Fahnestock MA, Kawamura K, Montzka SA, Muhle J, Scambos TA, Shields E, Shuman CA, Suwa M, Tans P, Weiss RF.  2010.  Deep air convection in the firn at a zero-accumulation site, central Antarctica. Earth and Planetary Science Letters. 293:359-367.   10.1016/j.epsl.2010.03.003   AbstractWebsite

Ice cores provide unique archives of past atmospheres and climate, but interpretation of trapped-gas records and their climatic significance has been hampered by a poor knowledge of the prevalence of air convection in the firn layer on top of polar ice sheets. In particular, the phasing of greenhouse gases and climate from ice cores has been obscured by a discrepancy between empirical and model-based estimates of the age difference between trapped gases and enclosing ice, which may be due to air convection. Here we show that deep air convection (>23 m) occurs at a windy, near-zero-accumulation rate site in central Antarctica known informally as the Megadunes site (80.77914 degrees S, 124.48796 degrees E). Deep convection is evident in depth profiles of air withdrawn from the firn layer, in the observed pattern of the nitrogen isotope ratio (15)N/(14)N, the argon isotope ratio (40)Ar/(36)Ar, and in the mixing ratios of the anthropogenic halocarbons methyl chloroform (CH(3)CCl(3)) and HFC-134a (CH(2)FCF(3)). Transport parameters (diffusivities) were inferred and air was dated using measured carbon dioxide (CO(2)) and methane (CH(4)) mixing ratios, by comparing with the Law Dome atmospheric record, which shows that these are the oldest firn air samples ever recovered (CO(2) mean age = 1863 AD). The low accumulation rate and the consequent intense metamorphism of the firn (due to prolonged exposure to seasonal temperature cycling) likely contribute to deep air convection via large grain size and vertical cracks that act as conduits for vigorous air motion. The Megadunes site provides a possible modern analog for the glacial conditions in the Vostok, Dome Fuji, and Dome C ice core records and a possible explanation for lower-than-expected (15)N/(14)N ratios in trapped air bubbles at these times. A general conclusion is that very low accumulation rate causes deep air convection via its effect on firn structural characteristics. (C) 2010 Elsevier B.V. All rights reserved.