Export 9 results:
Sort by: Author Title Type [ Year  (Desc)]
Wagner, TJW, Dell RW, Eisenman I, Keeling RF, Padman L, Severinghaus JP.  2018.  Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich events. Earth and Planetary Science Letters. 495:157-163.   10.1016/j.epsl.2018.05.006   AbstractWebsite

The last glacial period was punctuated by episodes of massive iceberg calving from the Laurentide Ice Sheet, called Heinrich events, which are identified by layers of ice-rafted debris (IRD) in ocean sediment cores from the North Atlantic. The thickness of these IRD layers declines more gradually with distance from the iceberg sources than would be expected based on present-day iceberg drift and decay. Here we model icebergs as passive Lagrangian particles driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. To address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, large densely packed armadas of icebergs. This leads to wintertime sea ice formation even in relatively low latitudes. The sea ice in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that sea ice could plausibly have formed around the icebergs during four months each winter. Allowing for four months of sea ice in the model results in a simulated IRD distribution which approximately agrees with the distribution of IRD in sediment cores. (C) 2018 Elsevier B.V. All rights reserved.

Bertler, NAN, Conway H, Dahl-Jensen D, Emanuelsson DB, Winstrup M, Vallelonga PT, Lee JE, Brook EJ, Severinghaus JP, Fudge TJ, Keller ED, Baisden WT, Hindmarsh RCA, Neff PD, Blunier T, Edwards R, Mayewski PA, Kipfstuhl S, Buizert C, Canessa S, Dadic R, Kjaer HA, Kurbatov A, Zhang DQ, Waddington ED, Baccolo G, Beers T, Brightley HJ, Carter L, Clemens-Sewall D, Ciobanu VG, Delmonte B, Eling L, Ellis A, Ganesh S, Golledge NR, Haines S, Handley M, Hawley RL, Hogan CM, Johnson KM, Korotkikh E, Lowry DP, Mandeno D, McKay RM, Menking JA, Naish TR, Noerling C, Ollive A, Orsi A, Proemse BC, Pyne AR, Pyne RL, Renwick J, Scherer RP, Semper S, Simonsen M, Sneed SB, Steig EJ, Tuohy A, Venugopal AU, Valero-Delgado F, Venkatesh J, Wang FT, Wang SM, Winski DA, Winton VHL, Whiteford A, Xiao CD, Yang J, Zhang X.  2018.  The Ross Sea Dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years. Climate of the Past. 14:193-214.   10.5194/cp-14-193-2018   AbstractWebsite

High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

McConnell, JR, Burke A, Dunbar NW, Kohler P, Thomas JL, Arienzo MM, Chellman NJ, Maselli OJ, Sigl M, Adkins JF, Baggenstos D, Burkhart JF, Brook EJ, Buizert C, Cole-Dai J, Fudge TJ, Knorr G, Graf HF, Grieman MM, Iverson N, McGwire KC, Mulvaney R, Paris G, Rhodes RH, Saltzman ES, Severinghaus JP, Steffensen JP, Taylor KC, Winckler G.  2017.  Synchronous volcanic eruptions and abrupt climate change similar to 17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences of the United States of America. 114:10035-10040.   10.1073/pnas.1705595114   AbstractWebsite

Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until similar to 17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, similar to 192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation similar to 17.7 ka.

Cuffey, KM, Clow GD, Steig EJ, Buizert C, Fudge TJ, Koutnik M, Waddington ED, Alley RB, Severinghaus JP.  2016.  Deglacial temperature history of West Antarctica. Proceedings of the National Academy of Sciences of the United States of America. 113:14249-14254.   10.1073/pnas.1609132113   AbstractWebsite

The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth's climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes' sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3 +/- 1.8 degrees C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

Goodge, JW, Severinghaus JP.  2016.  Rapid Access Ice Drill: a new tool for exploration of the deep Antarctic ice sheets and subglacial geology. Journal of Glaciology. 62:1049-1064.   10.1017/jog.2016.97   AbstractWebsite

A new Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to create borehole observatories and take cores in deep ice, the glacial bed and bedrock below. RAID is a mobile drilling system to make multiple long, narrow boreholes in a single field season in Antarctica. RAID is based on a mineral exploration-type rotary rock-coring system using threaded drill pipe to cut through ice using reverse circulation of a non-freezing fluid for pressure-compensation, maintenance of temperature and removal of ice cuttings. Near the bottom of the ice sheet, a wireline latching assembly will enable rapid coring of ice, the glacial bed and bedrock below. Once complete, boreholes will be kept open with fluid, capped and available for future down-hole measurement of temperature gradient, heat flow, ice chronology and ice deformation. RAID is designed to penetrate up to 3300 m of ice and take cores in <200 hours, allowing completion of a borehole and coring in similar to 10 d at each site. Together, the rapid drilling capability and mobility of the system, along with ice-penetrating imaging methods, will provide a unique 3-D picture of interior and subglacial features of the Antarctic ice sheets.

Marcott, SA, Bauska TK, Buizert C, Steig EJ, Rosen JL, Cuffey KM, Fudge TJ, Severinghaus JP, Ahn J, Kalk ML, McConnell JR, Sowers T, Taylor KC, White JWC, Brook EJ.  2014.  Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature. 514:616-+.   10.1038/nature13799   AbstractWebsite

Global climate and the concentration of atmospheric carbon dioxide (CO2) are correlated over recent glacial cycles(1,2). The combination of processes responsible for a rise in atmospheric CO2 at the last glacial termination(1,3) (23,000 to 9,000 years ago), however, remains uncertain(1-3). Establishing the timing and rate of CO2 changes in the past provides critical insight into the mechanisms that influence the carbon cycle and helps put present and future anthropogenic emissions in context. Here we present CO2 and methane (CH4) records of the last deglaciation from a new high-accumulation West Antarctic ice core with unprecedented temporal resolution and precise chronology. We show that although low-frequency CO2 variations parallel changes in Antarctic temperature, abrupt CO2 changes occur that have a clear relationship with abrupt climate changes in the Northern Hemisphere. A significant proportion of the direct radiative forcing associated with the rise in atmospheric CO2 occurred in three sudden steps, each of 10 to 15 parts per million. Every step took place in less than two centuries and was followed by no notable change in atmospheric CO2 for about 1,000 to 1,500 years. Slow, millennial-scale ventilation of Southern Ocean CO2-rich, deep-ocean water masses is thought to have been fundamental to the rise in atmospheric CO2 associated with the glacial termination(4), given the strong covariance of CO2 levels and Antarctic temperatures(5). Our data establish a contribution from an abrupt, centennial-scale mode of CO2 variability that is not directly related to Antarctic temperature. We suggest that processes operating on centennial timescales, probably involving the Atlantic meridional overturning circulation, seem to be influencing global carbon-cycle dynamics and are at present not widely considered in Earth system models.

Petrenko, VV, Smith AM, Brook EJ, Lowe D, Riedel K, Brailsford G, Hua Q, Schaefer H, Reeh N, Weiss RF, Etheridge D, Severinghaus JP.  2009.  14C-CH4 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources. Science. 324:506-508.   10.1126/science.1168909   AbstractWebsite

The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (similar to 11,600 years ago) has been the subject of much debate. The carbon-14 (C-14) content of methane ((CH4)-C-14) should distinguish between wetland and clathrate contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated by direct cosmogenic C-14 production in ice. C-14 of CO was measured to better understand this process and correct the sample (CH4)-C-14. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise.

Aciego, SM, Cuffey KM, Kavanaugh JL, Morse DL, Severinghaus JP.  2007.  Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica. Quaternary Research. 68:303-313.   10.1016/j.yqres.2007.07.013   AbstractWebsite

Ice exposed in ablation zones of ice sheets can be a valuable source of samples for paleoclimate studies and information about long-term ice dynamics. We report a 28-km long stable isotope sampling transect along a flowline on lower Taylor Glacier, Antarctica, and show that ice from the last glacial period is exposed here over tens of kilometers. Gas isotope analyses on a small number of samples confirm our age hypothesis. These chronostratigraphic data contain information about past ice dynamics and in particular should be sensitive to the longitudinal strain rate on the north flank of Taylor Dome, averaged over millennia. The imprint of climatic changes on ice dynamics may be discernible in these data. (c) 2007 University of Washington. All rights reserved.

Severinghaus, JP, Brook EJ.  1999.  Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science. 286:930-934.   10.1126/science.286.5441.930   AbstractWebsite

The last glacial period was terminated by an abrupt warming event in the North Atlantic similar to 15,000 years before the present, and warming events of similar age have been reported from Low Latitudes. Understanding the mechanism of this termination requires that the precise relative timing of abrupt climate warming in the tropics versus the North Atlantic be known. Nitrogen and argon isotopes in trapped air in Greenland ice show that the Greenland Summit warmed 9 +/- 3 degrees C over a period of several decades, beginning 14,672 years ago. Atmospheric methane concentrations rose abruptly over a similar to 50-year period and began their increase 20 to 30 years after the onset of the abrupt Greenland warming. These data suggest that tropical climate became warmer or wetter (or both) similar to 20 to 80 years after the onset of Greenland warming, supporting a North Atlantic rather than a tropical trigger for the climate event.