Publications

Export 3 results:
Sort by: Author Title [ Type  (Desc)] Year
Journal Article
Baggenstos, D, Bauska TK, Severinghaus JP, Lee JE, Schaefer H, Buizert C, Brook EJ, Shackleton S, Petrenko VV.  2017.  Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Climate of the Past. 13:943-958.   10.5194/cp-13-943-2017   AbstractWebsite

Old ice for paleo-environmental studies, traditionally accessed through deep core drilling on domes and ridges on the large ice sheets, can also be retrieved at the surface from ice sheet margins and blue ice areas. The practically unlimited amount of ice available at these sites satisfies a need in the community for studies of trace components requiring large sample volumes. For margin sites to be useful as ancient ice archives, the ice stratigraphy needs to be understood and age models need to be established. We present measurements of trapped gases in ice from Taylor Glacier, Antarctica, to date the ice and assess the completeness of the stratigraphic section. Using delta O-18 of O-2 and methane concentrations, we unambiguously identify ice from the last glacial cycle, covering every climate interval from the early Holocene to the penultimate interglacial. A high-resolution transect reveals the last deglaciation and the Last Glacial Maximum (LGM) in detail. We observe large-scale deformation in the form of folding, but individual stratigraphic layers do not appear to have undergone irregular thinning. Rather, it appears that the entire LGM-deglaciation sequence has been transported from the interior of the ice sheet to the surface of Taylor Glacier relatively undisturbed. We present an age model that builds the foundation for gas studies on Taylor Glacier. A comparison with the Taylor Dome ice core confirms that the section we studied on Taylor Glacier is better suited for paleo-climate reconstructions of the LGM due to higher accumulation rates.

Cuffey, KM, Clow GD, Steig EJ, Buizert C, Fudge TJ, Koutnik M, Waddington ED, Alley RB, Severinghaus JP.  2016.  Deglacial temperature history of West Antarctica. Proceedings of the National Academy of Sciences of the United States of America. 113:14249-14254.   10.1073/pnas.1609132113   AbstractWebsite

The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth's climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes' sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3 +/- 1.8 degrees C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

Seltzer, AM, Buizert C, Baggenstos D, Brook EJ, Ahn J, Yang JW, Severinghaus JP.  2017.  Does delta O-18 of O-2 record meridional shifts in tropical rainfall? Climate of the Past. 13:1323-1338.   10.5194/cp-13-1323-2017   AbstractWebsite

Marine sediments, speleothems, paleo-lake elevations, and ice core methane and delta O-18 of O-2 (delta O-18(atm)) records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of delta O-18(atm) and inferred changes in fractionation by the global terrestrial biosphere (Delta epsilon(LAND)) from discrete gas measurements in the WAIS Divide (WD) and Siple Dome (SD) Antarctic ice cores. On the common WD timescale, it is evident that maxima in Delta epsilon(LAND) are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 - periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP)-weighted delta(OatmO)-O-18 of terrestrial precipitation (the source water for atmospheric O-2 production), we propose a simple mechanism by which Delta epsilon(LAND) tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, Delta epsilon(LAND) should decrease due to the underlying meridional gradient in rainfall delta O-18. A southward shift should increase Delta epsilon(LAND). Monsoon intensity also influences delta O-18 of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in Delta epsilon(LAND) unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by Delta epsilon(LAND).