Export 25 results:
Sort by: Author Title Type [ Year  (Desc)]
Buizert, C, Severinghaus JP.  2016.  Dispersion in deep polar firn driven by synoptic-scale surface pressure variability. Cryosphere. 10:2099-2111.   10.5194/tc-10-2099-20160   AbstractWebsite

Commonly, three mechanisms of firn air transport are distinguished: molecular diffusion, advection, and near-surface convective mixing. Here we identify and describe a fourth mechanism, namely dispersion driven by synoptic-scale surface pressure variability (or barometric pumping). We use published gas chromatography experiments on firn samples to derive the along-flow dispersivity of firn, and combine this dispersivity with a dynamical air pressure propagation model forced by surface air pressure time series to estimate the magnitude of dispersive mixing in the firn. We show that dispersion dominates mixing within the firn lock-in zone. Trace gas concentrations measured in firn air samples from various polar sites confirm that dispersive mixing occurs. Including dispersive mixing in a firn air transport model suggests that our theoretical estimates have the correct order of magnitude, yet may overestimate the true dispersion. We further show that strong barometric pumping, such as at the Law Dome site, may reduce the gravitational enrichment of delta N-15-N-2 and other tracers below gravitational equilibrium, questioning the traditional definition of the lock-in depth as the depth where delta N-15 enrichment ceases. Last, we propose that Kr-86 excess may act as a proxy for past synoptic activity (or paleo-storminess) at the site.

Orsi, AJ, Kawamura K, Fegyveresi JM, Headly MA, Alley RB, Severinghaus JP.  2015.  Differentiating bubble-free layers from melt layers in ice cores using noble gases. Journal of Glaciology. 61:585-594.   10.3189/2015JoG14J237   AbstractWebsite

Melt layers are clear indicators of extreme summer warmth on polar ice caps. The visual identification of refrozen meltwater as clear bubble-free layers cannot be used to study some past warm periods, because, in deeper ice, bubbles are lost to clathrate formation. We present here a reliable method to detect melt events, based on the analysis of Kr/Ar and Xe/Ar ratios in ice cores, and apply it to the detection of melt in clathrate ice from the Eemian at NEEM, Greenland. Additionally, melt layers in ice cores can compromise the integrity of the gas record by dissolving soluble gases, or by altering gas transport in the firn, which affects the gas chronology. We find that the easily visible 1 mm thick bubble-free layers in the WAIS Divide ice core do not contain sufficient melt to alter the gas composition in the core, and do not cause artifacts or discontinuities in the gas chronology. The presence of these layers during winter, and the absence of anomalies in soluble gases, suggests that these layers can be formed by processes other than refreezing of meltwater. Consequently, the absence of bubbles in thin crusts is not in itself proof of a melt event.

Rhodes, RH, Brook EJ, Chiang JCH, Blunier T, Maselli OJ, McConnell JR, Romanini D, Severinghaus JP.  2015.  Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science. 348:1016-1019.   10.1126/science.1262005   AbstractWebsite

The causal mechanisms responsible for the abrupt climate changes of the Last Glacial Period remain unclear. One major difficulty is dating ice-rafted debris deposits associated with Heinrich events: Extensive iceberg influxes into the North Atlantic Ocean linked to global impacts on climate and biogeochemistry. In a new ice core record of atmospheric methane with ultrahigh temporal resolution, we find abrupt methane increases within Heinrich stadials 1, 2, 4, and 5 that, uniquely, have no counterparts in Greenland temperature proxies. Using a heuristic model of tropical rainfall distribution, we propose that Hudson Strait Heinrich events caused rainfall intensification over Southern Hemisphere land areas, thereby producing excess methane in tropical wetlands. Our findings suggest that the climatic impacts of Heinrich events persisted for 740 to 1520 years.

Buizert, C, Adrian B, Ahn J, Albert M, Alley RB, Baggenstos D, Bauska TK, Bay RC, Bencivengo BB, Bentley CR, Brook EJ, Chellman NJ, Clow GD, Cole-Dai J, Conway H, Cravens E, Cuffey KM, Dunbar NW, Edwards JS, Fegyveresi JM, Ferris DG, Fitzpatrick JJ, Fudge TJ, Gibson CJ, Gkinis V, Goetz JJ, Gregory S, Hargreaves GM, Iverson N, Johnson JA, Jones TR, Kalk ML, Kippenhan MJ, Koffman BG, Kreutz K, Kuhl TW, Lebar DA, Lee JE, Marcott SA, Markle BR, Maselli OJ, McConnell JR, McGwire KC, Mitchell LE, Mortensen NB, Neff PD, Nishiizumi K, Nunn RM, Orsi AJ, Pasteris DR, Pedro JB, Pettit EC, Price PB, Priscu JC, Rhodes RH, Rosen JL, Schauer AJ, Schoenemann SW, Sendelbach PJ, Severinghaus JP, Shturmakov AJ, Sigl M, Slawny KR, Souney JM, Sowers TA, Spencer MK, Steig EJ, Taylor KC, Twickler MS, Vaughn BH, Voigt DE, Waddington ED, Welten KC, Wendricks AW, White JWC, Winstrup M, Wong GJ, Woodruff TE, Members WDP.  2015.  Precise interpolar phasing of abrupt climate change during the last ice age. Nature. 520:661-U169.   10.1038/nature14401   AbstractWebsite

The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeodimate archives'. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa''', suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw(4-6). Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events'. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision''''". Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 +/- 92 years (2 sigma a) for DansgaardOeschger events, including the Bolling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 +/- 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.

Mitchell, LE, Buizert C, Brook EJ, Breton DJ, Fegyveresi J, Baggenstos D, Orsi A, Severinghaus J, Alley RB, Albert M, Rhodes RH, McConnell JR, Sigl M, Maselli O, Gregory S, Ahn J.  2015.  Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research-Atmospheres. 120:2558-2574.   10.1002/2014jd022766   AbstractWebsite

Interpretation of ice core trace gas records depends on an accurate understanding of the processes that smooth the atmospheric signal in the firn. Much work has been done to understand the processes affecting air transport in the open pores of the firn, but a paucity of data from air trapped in bubbles in the firn-ice transition region has limited the ability to constrain the effect of bubble closure processes. Here we present high-resolution measurements of firn density, methane concentrations, nitrogen isotopes, and total air content that show layering in the firn-ice transition region at the West Antarctic Ice Sheet (WAIS) Divide ice core site. Using the notion that bubble trapping is a stochastic process, we derive a new parameterization for closed porosity that incorporates the effects of layering in a steady state firn modeling approach. We include the process of bubble trapping into an open-porosity firn air transport model and obtain a good fit to the firn core data. We find that layering broadens the depth range over which bubbles are trapped, widens the modeled gas age distribution of air in closed bubbles, reduces the mean gas age of air in closed bubbles, and introduces stratigraphic irregularities in the gas age scale that have a peak-to-peak variability of 10 years at WAIS Divide. For a more complete understanding of gas occlusion and its impact on ice core records, we suggest that this experiment be repeated at sites climatically different from WAIS Divide, for example, on the East Antarctic plateau.

Rosen, JL, Brook EJ, Severinghaus JP, Blunier T, Mitchell LE, Lee JE, Edwards JS, Gkinis V.  2014.  An ice core record of near-synchronous global climate changes at the Bolling transition. Nature Geoscience. 7:459-463.   10.1038/ngeo2147   AbstractWebsite

The abrupt warming that initiated the Bolling-Allerod interstadial was the penultimate warming in a series of climate variations known as Dansgaard-Oeschger events. Despite the clear expression of this transition in numerous palaeoclimate records, the relative timing of climate shifts in different regions of the world and their causes are subject to debate. Here we explore the phasing of global climate change at the onset of the Bolling-Allerod using air preserved in bubbles in the North Greenland Eemian ice core. Specifically, we measured methane concentrations, which act as a proxy for low-latitude climate, and the N-15/N-14 ratio of N-2, which reflects Greenland surface temperature, over the same interval of time. We use an atmospheric box model and a firn air model to account for potential uncertainties in the data, and find that changes in Greenland temperature and atmospheric methane emissions at the Bolling onset occurred essentially synchronously, with temperature leading by 4.5(-24)(+21) years. We cannot exclude the possibility that tropical climate could iag changing methane concentrations by up to several decades, if the initial methane rise came from boreal sources alone. However, because even boreal methane-producing regions lie far from Greenland, we conclude that the mechanism that drove abrupt change at this time must be capable of rapidly transmitting climate changes across the globe.

Orsi, AJ, Cornuelle BD, Severinghaus JP.  2014.  Magnitude and temporal evolution of Dansgaard-Oeschger event 8 abrupt temperature change inferred from nitrogen and argon isotopes in GISP2 ice using a new least-squares inversion. Earth and Planetary Science Letters. 395:81-90.   10.1016/j.epsl.2014.03.030   AbstractWebsite

Polar temperature is often inferred from water isotopes in ice cores. However, non-temperature effects on 3180 are important during the abrupt events of the last glacial period, such as changes in the seasonality of precipitation, the northward movement of the storm track, and the increase in accumulation. These effects complicate the interpretation of 8180 as a temperature proxy. Here, we present an independent surface temperature reconstruction, which allows us to test the relationship between delta O-18(ice) and temperature, during Dansgaard-Oeschger event 8, 38.2 thousand yrs ago using new delta N-15 and delta Ar-40 data from the GISP2 ice core in Greenland. This temperature reconstruction relies on a new inversion of inert gas isotope data using generalized least-squares, and includes a robust uncertainty estimation. We find that both temperature and delta O-18 increased in two steps of 20 and 140 yrs, with an overall amplitude of 11.80 +/- 1.8 degrees C between the stadial and interstadial centennial-mean temperature. The coefficient alpha = d delta O-18/dT changes with each time-segment, which shows that non-temperature sources of fractionation have a significant contribution to the delta O-18 signal. When measured on century-averaged values, we find that alpha = d delta O-18/dT = 0.32 +/- 0.06%(0)/degrees C, which is similar to the glacial/Holocene value of 0.328%(o)/degrees C. (C) 2014 Elsevier B.V. All rights reserved.

Buizert, C, Baggenstos D, Jiang W, Purtschert R, Petrenko VV, Lu ZT, Muller P, Kuhl T, Lee J, Severinghaus JP, Brook EJ.  2014.  Radiometric Kr-81 dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proceedings of the National Academy of Sciences of the United States of America. 111:6876-6881.   10.1073/pnas.1320329111   AbstractWebsite

We present successful Kr-81-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four similar to 350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The Kr-81 radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 +/- 2.5 ka. Our experimental methods and sampling strategy are validated by (i) Kr-85 and Ar-39 analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the Kr-81 ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA Kr-81 analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, Kr-81 dating of ice cores is a future possibility.

Fudge, TJ, Steig EJ, Markle BR, Schoenemann SW, Ding QH, Taylor KC, McConnell JR, Brook EJ, Sowers T, White JWC, Alley RB, Cheng H, Clow GD, Cole-Dai J, Conway H, Cuffey KM, Edwards JS, Edwards RL, Edwards R, Fegyveresi JM, Ferris D, Fitzpatrick JJ, Johnson J, Hargreaves G, Lee JE, Maselli OJ, Mason W, McGwire KC, Mitchell LE, Mortensen N, Neff P, Orsi AJ, Popp TJ, Schauer AJ, Severinghaus JP, Sigl M, Spencer MK, Vaughn BH, Voigt DE, Waddington ED, Wang XF, Wong GJ, Members WDP.  2013.  Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature. 500:440-+.   10.1038/nature12376   AbstractWebsite

The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate(1,2). Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago(3,4). An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently(2,5). Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere(6) associated with an abrupt decrease in Atlantic meridional overturning circulation(7). However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

Kawamura, K, Severinghaus JP, Albert MR, Courville ZR, Fahnestock MA, Scambos T, Shields E, Shuman CA.  2013.  Kinetic fractionation of gases by deep air convection in polar firn. Atmospheric Chemistry and Physics. 13:11141-11155.   10.5194/acp-13-11141-2013   AbstractWebsite

A previously unrecognized type of gas fractionation occurs in firn air columns subjected to intense convection. It is a form of kinetic fractionation that depends on the fact that different gases have different molecular diffusivities. Convective mixing continually disturbs diffusive equilibrium, and gases diffuse back toward diffusive equilibrium under the influence of gravity and thermal gradients. In near-surface firn where convection and diffusion compete as gas transport mechanisms, slow-diffusing gases such as krypton (Kr) and xenon (Xe) are more heavily impacted by convection than fast diffusing gases such as nitrogen (N-2) and argon (Ar), and the signals are preserved in deep firn and ice. We show a simple theory that predicts this kinetic effect, and the theory is confirmed by observations using a newly-developed Kr and Xe stable isotope system in air samples from the Megadunes field site on the East Antarctic plateau. Numerical simulations confirm the effect's magnitude at this site. A main purpose of this work is to support the development of a proxy indicator of past convection in firn, for use in ice-core gas records. To this aim, we also show with the simulations that the magnitude of the kinetic effect is fairly insensitive to the exact profile of convective strength, if the overall thickness of the convective zone is kept constant. These results suggest that it may be feasible to test for the existence of an extremely deep (similar to 30-40 m) convective zone, which has been hypothesized for glacial maxima, by future ice-core measurements.

Brook, EJ, Severinghaus JP.  2011.  Methane and megafauna. Nature Geoscience. 4:271-272.   10.1038/ngeo1140   AbstractWebsite
Fain, X, Ferrari CP, Dommergue A, Albert MR, Battle M, Severinghaus J, Arnaud L, Barnola JM, Cairns W, Barbante C, Boutron C.  2009.  Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s. Proceedings of the National Academy of Sciences of the United States of America. 106:16114-16119.   10.1073/pnas.0905117106   AbstractWebsite

Mercury (Hg) is an extremely toxic pollutant, and its biogeochemical cycle has been perturbed by anthropogenic emissions during recent centuries. In the atmosphere, gaseous elemental mercury (GEM; Hg degrees) is the predominant form of mercury (up to 95%). Here we report the evolution of atmospheric levels of GEM in mid- to high-northern latitudes inferred from the interstitial air of firn (perennial snowpack) at Summit, Greenland. GEM concentrations increased rapidly after World War II from approximate to 1.5 ng m(-3) reaching a maximum of approximate to 3 ng m(-3) around 1970 and decreased until stabilizing at approximate to 1.7 ng m(-3) around 1995. This reconstruction reproduces real-time measurements available from the Arctic since 1995 and exhibits the same general trend observed in Europe since 1990. Anthropogenic emissions caused a two-fold rise in boreal atmospheric GEM concentrations before the 1970s, which likely contributed to higher deposition of mercury in both industrialized and remotes areas. Once deposited, this toxin becomes available for methylation and, subsequently, the contamination of ecosystems. Implementation of air pollution regulations, however, enabled a large-scale decline in atmospheric mercury levels during the 1980s. The results shown here suggest that potential increases in emissions in the coming decades could have a similar large-scale impact on atmospheric Hg levels.

Severinghaus, JP, Beaudette R, Headly MA, Taylor K, Brook EJ.  2009.  Oxygen-18 of O2 Records the Impact of Abrupt Climate Change on the Terrestrial Biosphere. Science. 324:1431-1434.   10.1126/science.1169473   AbstractWebsite

Photosynthesis and respiration occur widely on Earth's surface, and the O-18/O-16 ratio of the oxygen produced and consumed varies with climatic conditions. As a consequence, the history of climate is reflected in the deviation of the O-18/O-16 of air (delta O-18(atm)) from seawater delta O-18 (known as the Dole effect). We report variations in delta O-18(atm) over the past 60,000 years related to Heinrich and Dansgaard-Oeschger events, two modes of abrupt climate change observed during the last ice age. Correlations with cave records support the hypothesis that the Dole effect is primarily governed by the strength of the Asian and North African monsoons and confirm that widespread changes in low-latitude terrestrial rainfall accompanied abrupt climate change. The rapid delta O-18(atm) changes can also be used to synchronize ice records by providing global time markers.

Severinghaus, JP.  2009.  Southern see-saw seen. Nature. 457:1093-1094.   10.1038/4571093a   AbstractWebsite

The bipolar see-saw hypothesis provides an explanation for why temperature shifts in the two hemispheres were out of phase at certain times. The hypothesis has now passed a test of one of its predictions.

Kobashi, T, Severinghaus JP, Barnola JM.  2008.  4 +/- 1.5 degrees C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice. Earth and Planetary Science Letters. 268:397-407.   10.1016/j.epsl.2008.01.032   AbstractWebsite

Nitrogen and argon isotopes in air trapped in a Greenland ice core (GISP2) show two prominent peaks in the interval 11,800-10,800 B.P., which indicate two large abrupt warming events. The first abrupt wanning (10 +/- 4 degrees C) is the widely documented event at the end of the Younger Dryas. Here, we report on the second abrupt warming (4 +/- 1.5 degrees C), which occurred at the end of a short lived cooler interval known as the Preboreal Oscillation (11,270 +/- 30 B.P.). A rapid snow accumulation increase suggests that the climatic transition may have occurred within a few years. The character of the Preboreal Oscillation and the subsequent abrupt warming is similar to the Dansgaard-Oeschger (D/O) events in the last glacial period, suggestive of a common mechanism, but different from another large climate change at 8,200 B.P., in which cooling was abrupt but subsequent warming was gradual. The large abrupt warming at 11,270 B.P. may be considered to be the final D/O event prior to the arrival of the present stable and warm epoch. (c) 2008 Elsevier B.V. All rights reserved.

Grachev, AM, Brook EJ, Severinghaus JP.  2007.  Abrupt changes in atmospheric methane at the MIS 5b-5a transition. Geophysical Research Letters. 34   10.1029/2007gl029799   AbstractWebsite

New ice core analyses show that the prominent rise in atmospheric methane concentration at Dansgaard-Oeschger event 21 was interrupted by a century-long 20% decline, which was previously unrecognized. The reversal was found in a new similar to 100-year resolution study of methane in the GISP2 ice core, encompassing the beginning of D-O event 21, which also corresponds to the transition from MIS 5b to 5a. Although a corresponding reversal (within age uncertainty) is observed in climate proxies measured in GISP2 ice, including delta O-18(ice), electrical conductivity, light scattering, and several ions, this feature has not been discussed previously. Abrupt changes in methane are paralleled by changes in delta N-15 of trapped air, a quantity that reflects local temperature change at Greenland summit. The reversal described here supports the hypothesis that climate can be unstable during major transitions, as was previously described for the last deglaciation.

Huber, C, Beyerle U, Leuenberger M, Schwander J, Kipfer R, Spahni R, Severinghaus JP, Weiler K.  2006.  Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth and Planetary Science Letters. 243:61-73.   10.1016/j.epsl.2005.12.036   AbstractWebsite

We present elemental and isotopic measurements of noble gases (He, Ne, Ar, Kr, and Xe), oxygen and nitrogen of firn air from two sites. The first set of samples was taken in 1998 at the summit of the Devon Ice Cap in the eastern part of Devon Island. The second set was taken in 2001 at NGRIP location (North Greenland). He and Ne are heavily enriched relative to Ar with respect to the atmosphere in the air near the close-off depth at around 50-70 in. The enrichment increases with depth and reaches the maximum value in the deepest samples just above the zone of impermeable ice where no free air could be extracted anymore. Similarly, elemental ratios of O(2)/N(2), O(2)/Ar and Ar/N(2) are increasing with depth. In contrast but in line with expectations, isotopic ratios of (15)N/(14)N, (18)O/(16)O, and (36)Ar/(40)Ar show no significant enrichment near the close-off depth. The observed isotopic ratios in the firn air column can be explained within the uncertainty ranges by the well-known processes of gravitational enrichment and thermal diffusion. To explain the elemental ratios, however, an additional fractionation process during bubble inclusion has to be considered. We implemented this additional process into our firn air model. The fractionation factors were found by fitting model profiles to the data. We found a very similar close-off fractionation behavior for the different molecules at both sites. For smaller gas species (mainly He and Ne) the fractionation factors are linearly correlated to the molecule size, whereas for diameters greater than about 3.6 A the fractionation seems to be significantly smaller or even negligible. An explanation for this size dependent fractionation process could be gas diffusion through the ice lattice. At Devon Island the enrichment at the bottom of the firn air column is about four times higher compared to NGRIP. We explain this by lower firn diffusivity at Devon Island, most probably due to melt layers, resulting in significantly reduced back diffusion of the excess gas near the close-off depth. The results of this study considerably increase the understanding of the processes occurring during air bubble inclusion near the close-off depth in firn and can help to improve the interpretation of direct firn air measurements, as well as air bubble measurements in ice cores, which are used in numerous studies as paleo proxies. (c) 2006 Elsevier B.V. All rights reserved.

Kawamura, K, Severinghaus JP, Ishidoya S, Sugawara S, Hashida G, Motoyama H, Fujii Y, Aoki S, Nakazawa T.  2006.  Convective mixing of air in firn at four polar sites. Earth and Planetary Science Letters. 244:672-682.   10.1016/j.epsl.2006.02.017   AbstractWebsite

Air withdrawn from the firn, at four polar sites (Dome Fuji, H72 and YM85, Antarctica and North GRIP, Greenland) was measured for delta N-15 of N-2 and delta O-18 of O-2 to test for the presence of convective air mixing in the top part of the firn, known as the "convective zone". Understanding the convective zone and its possible relationship to surface conditions is important for constructing accurate ice-core greenhouse gas chronologies and their phasing with respect to climate change. The thickness of the convective zone was inferred from a regression line with barometric slope of the data in the deep firn. It is less than a few meters at H72 and NGRIP, whereas a substantial convective zone is found at Dome Fuji (8.6 +/- 2.6 m) and YM85 (14.0 +/- 1.8 m). By matching the outputs of a diffusion model to the data, effective eddy diffusivities required to mix the firn air are found. At the surface of Dome Fuji and YM85, these are found to be several times greater than the molecular diffusivity in free air. The crossover from dominance of convection to molecular diffusion takes place at 7 +/- 2, 11 +/- 2 and 0.5 +/- 0.5 m at Dome Fuji, YM85 and NGRIP, respectively. These depths can be used as an alternative definition of the convective zone thickness. The firn permeability at Dome Fuji is expected to be high because of intense firn metamorphism due to the low accumulation rate and large seasonal air temperature variation at the site. The firn layers in the top several meters are exposed to strong temperature gradients for several decades, leading to large firn grains and depth hoar that enhance permeability. The thick convective zone at YM85 is unexpected because the temperature, accumulation rate and near-surface density are comparable to NGRIP. The strong katabatic wind at YM85 is probably responsible for creating the deep convection. The largest convective zone found in this study is still only half of the current inconsistency implied from the deep ice core gas isotopes and firn densification models. (c) 2006 Elsevier B.V. All rights reserved.

Taylor, KC, White JWC, Severinghaus JP, Brook EJ, Mayewski PA, Alley RB, Steig EJ, Spencer MK, Meyerson E, Meese DA, Lamorey GW, Grachev A, Gow AJ, Barnett BA.  2004.  Abrupt climate change around 22 ka on the Siple Coast of Antarctica. Quaternary Science Reviews. 23:7-15.   10.1016/j.quascirev.2003.09.004   AbstractWebsite

A new ice core from Siple Dome, Antarctica suggests the surface temperature increased by similar to6degreesC in just several decades at approximately 22 ka BP. This abrupt change did not occur 500 kin away in the Byrd ice core, or in climate proxy records in the Siple Dome core indicative of the mid-latitude Pacific. This demonstrates there was significant spatial heterogeneity in the response of the Antarctic climate during the last deglaciation and draws attention to unexplained mechanisms of abrupt climate change in Antarctica. (C) 2003 Elsevier Ltd. All rights reserved.

Landais, A, Caillon N, Severinghaus J, Barnola JM, Goujon C, Jouzel J, Masson-Delmotte V.  2004.  Isotopic measurements of air trapped in ice to quantify temperature changes. Comptes Rendus Geoscience. 336:963-970.   10.1016/j.crte.2004.03.013   AbstractWebsite

Isotopic measurements of air trapped in ice to quantify temperature changes. Isotopic measurements in polar ice core have shown a succession of rapid warming periods during the last glacial period over Greenland. However, this method underestimates the surface temperature variations. A new method based on gas thermal diffusion in the firn manages to quantify surface temperature variations through associated isotopic fractionations. We developed a method to extract air from the ice and to perform isotopic measurements to reduce analytical uncertainties to 0.006 and 0.020parts per thousand for delta(15)N and delta(40)Ar. It led to a 16 +/- 1.5degreesC surface temperature variation during a rapid warming (-70000 yr). (C) 2004 Academie des sciences. Publie par Elsevier SAS. Tous droits reserves.

Grachev, AM, Severinghaus JP.  2003.  Determining the thermal diffusion factor for Ar-40/Ar-36 in air to aid paleoreconstruction of abrupt climate change. Journal of Physical Chemistry A. 107:4636-4642.   10.1021/jp027817u   AbstractWebsite

The thermal diffusion factor (alpha(T)) of Ar-40/Ar-36 in air has been measured in the laboratory for the first time. The mean values of alpha(T) x 10(3) that we find at -30.0 degreesC are 9.85 +/- 0.04 for air and 11.25 +/- 0.03 for pure argon. The latter value is more precise than the data found in the literature. The temperature dependence of the thermal diffusion factor in air in the range -60 to -10 degreesC can be described by an empirical equation alpha(T) x 10(3) = 26.08 - 3952/ (+/-1%), where is the effective average temperature. Results of this study are valuable for reconstruction of magnitudes of abrupt climate change events recorded in Greenland ice cores. For one abrupt warming event similar to15,000 years ago, near the end of the last glacial period, these results yield a warming of 11 +/- 3 degreesC over several decades or less. Theoretical calculations are not yet able to provide the needed accuracy, and the experimental results for the thermal diffusion factor in air should be used for paleoenvironmental studies.

Grachev, AM, Severinghaus JP.  2003.  Laboratory determination of thermal diffusion constants for N-29(2)/N-28(2) in air at temperatures from-60 to 0 degrees C for reconstruction of magnitudes of abrupt climate changes using the ice core fossil-air paleothermometer. Geochimica Et Cosmochimica Acta. 67:345-360.   10.1016/s0016-7037(02)01115-8   AbstractWebsite

Rapid temperature change causes fractionation of isotopic gaseous species in air in firn (snow) by thermal diffusion, producing a signal that is preserved in trapped air bubbles as the snow forms ice. Using a model of heat penetration and gas diffusion in the firn, as well as the values of appropriate thermal diffusion constants, it is possible to reconstruct the magnitude of a particular paleoclimate change. Isotopic nitrogen in air serves as a convenient tracer for such paleoreconstruction, because the ratio N-29(2)/N-28(2) has stayed extremely constant in the atmosphere for greater than or equal to10(6) years. However, prior to this work no data were available for thermal diffusion of N-29(2)/N-28(2) in air, but only in pure N-2. We devised a laboratory experiment allowing fractionation of gases by thermal diffusion in a small, tightly controlled temperature difference. A mass spectrometer was employed in measuring the resulting fractionations yielding measurement precision greater than was attainable by earlier thermal diffusion investigators. Our laboratory experiments indicate that the value of the thermal diffusion sensitivity (Omega) for N-29(2)/N-28(2) in air is +(14.7 +/- 0.5) X 10(-3) per mil/degreesC when the average temperature is -30.0degreesC. The corresponding value for N-29(2)/N-28(2) in pure N-2 that we find is +(15.3 +/- 0.4) X 10(-3) per mil/degreesC at -30.6degreesC, in agreement with the previously available literature data within their large range of uncertainty. We find that an empirical equation, Omega = (8.656/T-K - 1232/T-K(2)) +/- 3% per mil/degreesC, describes the slight variation of the sensitivity values for N-29(2)/N-28(2) in air with temperature in the range of -60 to 0degreesC. A separate set of experiments also described in this paper rules out adsorption as a candidate for producing additional temperature change-driven fractionation of N-29(2)/N-28(2) in the firn air. The combined newly obtained data constitute a calibration of the fossil-air paleothermometer with respect to isotopic nitrogen and will serve to improve the estimates of the magnitudes of past abrupt climate changes recorded in ice cores. Copyright (C) 2003 Elsevier Science Ltd.

Brook, EJ, Harder S, Severinghaus J, Steig EJ, Sucher CM.  2000.  On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochemical Cycles. 14:559-572.   10.1029/1999gb001182   AbstractWebsite

We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bolling-Allerod period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200-300 ppb over time periods of 100-300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large-scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient tan indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Bolling-Allerod period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods.

Severinghaus, JP, Brook EJ.  1999.  Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science. 286:930-934.   10.1126/science.286.5441.930   AbstractWebsite

The last glacial period was terminated by an abrupt warming event in the North Atlantic similar to 15,000 years before the present, and warming events of similar age have been reported from Low Latitudes. Understanding the mechanism of this termination requires that the precise relative timing of abrupt climate warming in the tropics versus the North Atlantic be known. Nitrogen and argon isotopes in trapped air in Greenland ice show that the Greenland Summit warmed 9 +/- 3 degrees C over a period of several decades, beginning 14,672 years ago. Atmospheric methane concentrations rose abruptly over a similar to 50-year period and began their increase 20 to 30 years after the onset of the abrupt Greenland warming. These data suggest that tropical climate became warmer or wetter (or both) similar to 20 to 80 years after the onset of Greenland warming, supporting a North Atlantic rather than a tropical trigger for the climate event.

Severinghaus, JP, Sowers T, Brook EJ, Alley RB, Bender ML.  1998.  Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature. 391:141-146.   10.1038/34346   AbstractWebsite

Rapid temperature change fractionates gas Isotopes in unconsolidated snow, producing a signal that is preserved in trapped air bubbles as the snow forms ice, The fractionation of nitrogen and argon isotopes at the end of the Younger Dryas cold interval, recorded in Greenland ice, demonstrates that warming at this time was abrupt. This warming coincides with the onset of a prominent rise in atmospheric methane concentration, indicating that the climate change was synchronous (within a few decades) over a region of at least hemispheric extent, and providing constraints on previously proposed mechanisms of climate change at this time, The depth of the nitrogen-isotope signal relative to the depth of the climate change recorded in the Ice matrix indicates that, during the Younger Dryas, the summit of Greenland was 15 +/- 3 degrees C colder than today.