Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
Battle, MO, Severinghaus JP, Sofen ED, Plotkin D, Orsi AJ, Aydin M, Montzka SA, Sowers T, Tans PP.  2011.  Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide. Atmospheric Chemistry and Physics. 11:11007-11021.   10.5194/acp-11-11007-2011   AbstractWebsite

We sampled interstitial air from the perennial snowpack (firn) at a site near the West Antarctic Ice Sheet Divide (WAIS-D) and analyzed the air samples for a wide variety of gas species and their isotopes. We find limited convective influence (1.4-5.2 m, depending on detection method) in the shallow firn, gravitational enrichment of heavy species throughout the diffusive column in general agreement with theoretical expectations, a similar to 10 m thick lock-in zone beginning at similar to 67 m, and a total firn thickness consistent with predictions of Kaspers et al. (2004). Our modeling work shows that the air has an age spread (spectral width) of 4.8 yr for CO2 at the firn-ice transition. We also find that advection of firn air due to the 22 cm yr(-1) ice-equivalent accumulation rate has a minor impact on firn air composition, causing changes that are comparable to other modeling uncertainties and intrinsic sample variability. Furthermore, estimates of 1 age (the gas age/ice age difference) at WAIS-D appear to be largely unaffected by bubble closure above the lock-in zone. Within the lock-in zone, small gas species and their isotopes show evidence of size-dependent fractionation due to permeation through the ice lattice with a size threshold of 0.36 nm, as at other sites. We also see an unequivocal and unprecedented signal of oxygen isotope fractionation within the lock-in zone, which we interpret as the mass-dependent expression of a size-dependent fractionation process.

2010
Severinghaus, JP, Albert MR, Courville ZR, Fahnestock MA, Kawamura K, Montzka SA, Muhle J, Scambos TA, Shields E, Shuman CA, Suwa M, Tans P, Weiss RF.  2010.  Deep air convection in the firn at a zero-accumulation site, central Antarctica. Earth and Planetary Science Letters. 293:359-367.   10.1016/j.epsl.2010.03.003   AbstractWebsite

Ice cores provide unique archives of past atmospheres and climate, but interpretation of trapped-gas records and their climatic significance has been hampered by a poor knowledge of the prevalence of air convection in the firn layer on top of polar ice sheets. In particular, the phasing of greenhouse gases and climate from ice cores has been obscured by a discrepancy between empirical and model-based estimates of the age difference between trapped gases and enclosing ice, which may be due to air convection. Here we show that deep air convection (>23 m) occurs at a windy, near-zero-accumulation rate site in central Antarctica known informally as the Megadunes site (80.77914 degrees S, 124.48796 degrees E). Deep convection is evident in depth profiles of air withdrawn from the firn layer, in the observed pattern of the nitrogen isotope ratio (15)N/(14)N, the argon isotope ratio (40)Ar/(36)Ar, and in the mixing ratios of the anthropogenic halocarbons methyl chloroform (CH(3)CCl(3)) and HFC-134a (CH(2)FCF(3)). Transport parameters (diffusivities) were inferred and air was dated using measured carbon dioxide (CO(2)) and methane (CH(4)) mixing ratios, by comparing with the Law Dome atmospheric record, which shows that these are the oldest firn air samples ever recovered (CO(2) mean age = 1863 AD). The low accumulation rate and the consequent intense metamorphism of the firn (due to prolonged exposure to seasonal temperature cycling) likely contribute to deep air convection via large grain size and vertical cracks that act as conduits for vigorous air motion. The Megadunes site provides a possible modern analog for the glacial conditions in the Vostok, Dome Fuji, and Dome C ice core records and a possible explanation for lower-than-expected (15)N/(14)N ratios in trapped air bubbles at these times. A general conclusion is that very low accumulation rate causes deep air convection via its effect on firn structural characteristics. (C) 2010 Elsevier B.V. All rights reserved.

2009
Petrenko, VV, Smith AM, Brook EJ, Lowe D, Riedel K, Brailsford G, Hua Q, Schaefer H, Reeh N, Weiss RF, Etheridge D, Severinghaus JP.  2009.  14C-CH4 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources. Science. 324:506-508.   10.1126/science.1168909   AbstractWebsite

The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (similar to 11,600 years ago) has been the subject of much debate. The carbon-14 (C-14) content of methane ((CH4)-C-14) should distinguish between wetland and clathrate contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated by direct cosmogenic C-14 production in ice. C-14 of CO was measured to better understand this process and correct the sample (CH4)-C-14. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise.