Publications

Export 7 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Kawamura, K, Severinghaus JP, Ishidoya S, Sugawara S, Hashida G, Motoyama H, Fujii Y, Aoki S, Nakazawa T.  2006.  Convective mixing of air in firn at four polar sites. Earth and Planetary Science Letters. 244:672-682.   10.1016/j.epsl.2006.02.017   AbstractWebsite

Air withdrawn from the firn, at four polar sites (Dome Fuji, H72 and YM85, Antarctica and North GRIP, Greenland) was measured for delta N-15 of N-2 and delta O-18 of O-2 to test for the presence of convective air mixing in the top part of the firn, known as the "convective zone". Understanding the convective zone and its possible relationship to surface conditions is important for constructing accurate ice-core greenhouse gas chronologies and their phasing with respect to climate change. The thickness of the convective zone was inferred from a regression line with barometric slope of the data in the deep firn. It is less than a few meters at H72 and NGRIP, whereas a substantial convective zone is found at Dome Fuji (8.6 +/- 2.6 m) and YM85 (14.0 +/- 1.8 m). By matching the outputs of a diffusion model to the data, effective eddy diffusivities required to mix the firn air are found. At the surface of Dome Fuji and YM85, these are found to be several times greater than the molecular diffusivity in free air. The crossover from dominance of convection to molecular diffusion takes place at 7 +/- 2, 11 +/- 2 and 0.5 +/- 0.5 m at Dome Fuji, YM85 and NGRIP, respectively. These depths can be used as an alternative definition of the convective zone thickness. The firn permeability at Dome Fuji is expected to be high because of intense firn metamorphism due to the low accumulation rate and large seasonal air temperature variation at the site. The firn layers in the top several meters are exposed to strong temperature gradients for several decades, leading to large firn grains and depth hoar that enhance permeability. The thick convective zone at YM85 is unexpected because the temperature, accumulation rate and near-surface density are comparable to NGRIP. The strong katabatic wind at YM85 is probably responsible for creating the deep convection. The largest convective zone found in this study is still only half of the current inconsistency implied from the deep ice core gas isotopes and firn densification models. (c) 2006 Elsevier B.V. All rights reserved.

E
Huber, C, Beyerle U, Leuenberger M, Schwander J, Kipfer R, Spahni R, Severinghaus JP, Weiler K.  2006.  Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth and Planetary Science Letters. 243:61-73.   10.1016/j.epsl.2005.12.036   AbstractWebsite

We present elemental and isotopic measurements of noble gases (He, Ne, Ar, Kr, and Xe), oxygen and nitrogen of firn air from two sites. The first set of samples was taken in 1998 at the summit of the Devon Ice Cap in the eastern part of Devon Island. The second set was taken in 2001 at NGRIP location (North Greenland). He and Ne are heavily enriched relative to Ar with respect to the atmosphere in the air near the close-off depth at around 50-70 in. The enrichment increases with depth and reaches the maximum value in the deepest samples just above the zone of impermeable ice where no free air could be extracted anymore. Similarly, elemental ratios of O(2)/N(2), O(2)/Ar and Ar/N(2) are increasing with depth. In contrast but in line with expectations, isotopic ratios of (15)N/(14)N, (18)O/(16)O, and (36)Ar/(40)Ar show no significant enrichment near the close-off depth. The observed isotopic ratios in the firn air column can be explained within the uncertainty ranges by the well-known processes of gravitational enrichment and thermal diffusion. To explain the elemental ratios, however, an additional fractionation process during bubble inclusion has to be considered. We implemented this additional process into our firn air model. The fractionation factors were found by fitting model profiles to the data. We found a very similar close-off fractionation behavior for the different molecules at both sites. For smaller gas species (mainly He and Ne) the fractionation factors are linearly correlated to the molecule size, whereas for diameters greater than about 3.6 A the fractionation seems to be significantly smaller or even negligible. An explanation for this size dependent fractionation process could be gas diffusion through the ice lattice. At Devon Island the enrichment at the bottom of the firn air column is about four times higher compared to NGRIP. We explain this by lower firn diffusivity at Devon Island, most probably due to melt layers, resulting in significantly reduced back diffusion of the excess gas near the close-off depth. The results of this study considerably increase the understanding of the processes occurring during air bubble inclusion near the close-off depth in firn and can help to improve the interpretation of direct firn air measurements, as well as air bubble measurements in ice cores, which are used in numerous studies as paleo proxies. (c) 2006 Elsevier B.V. All rights reserved.

M
Severinghaus, JP, Grachev A, Luz B, Caillon N.  2003.  A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica. Geochimica Et Cosmochimica Acta. 67:325-343.   10.1016/s0016-7037(02)00965-1   AbstractWebsite

We describe a method for measuring the (40)Ar/(36)Ar ratio and the (84)Kr/(36)Ar ratio in air from bubbles trapped in ice cores. These ratios can provide constraints on the past thickness of the firn layer at the ice core site and on the magnitude of past rapid temperature variations when combined with measured (15)N/(14)N. Both variables contribute to paleoclimatic studies and ultimately to the understanding of the controls on Earth's climate. The overall precision of the (40)Ar/(36)Ar method (1 standard error of the mean) is 0.012parts per thousand for a sample analyzed in duplicate, corresponding to +/-0.6 in in reconstructed firn thickness. We use conventional dynamic isotope ratio mass spectrometry with minor modifications and special gas handling techniques designed to avoid fractionation. About 100 g of ice is used for a duplicate pair of analyses. An example of the technique applied to the GISP2 ice core yields an estimate of 11 +/- 3K of abrupt warming at the end of the last glacial period 15,000 years ago. The krypton/argon ratio can provide a diagnostic of argon leakage out of the bubbles, which may happen (naturally) during bubble close-off or (artifactually) if samples are warmed near the freezing point during core retrieval or storage. Argon leakage may fractionate the remaining (40)Ar/(36)Ar ratio by +0.007parts per thousand per parts per thousand change in (84)Kr/(36)Ar, introducing a possible bias in reconstructed firn thickness of about +2 in if thermal diffusion is not accounted for or +6 in if thermal diffusion effects are quantified with measured (15)N/(14)N. Reproducibility of (84)Kr/(36)Ar measured in air is about +/-0.2parts per thousand (1 standard error of the mean) but is about +/-1parts per thousand for ice core samples. Ice core samples are systematically enriched in (84)Kr/(36)Ar relative to atmosphere by similar to5parts per thousand, probably reflecting preferential size-dependent exclusion of the smaller argon atom during bubble entrapment. Recent results from the Siple Dome ice core reveal two climate events during the last deglaciation, including an 18-in reduction in firn thickness associated with an abrupt warming at sometime between 18 and 22 kyr BP and a partial or total removal of the firn during an ablation event at 15.3 kyr BP. Copyright (C) 2003 Elsevier Science Ltd.

Headly, MA, Severinghaus JP.  2007.  A method to measure Kr/N-2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd008317   AbstractWebsite

We describe a new method for precise measurement of Kr/N-2 ratios in air bubbles trapped in ice cores and the first reconstruction of atmospheric Kr/N-2 during the last glacial maximum (LGM) similar to 20,000 years ago. After gravitational correction, the Kr/N-2 record in ice cores should represent the atmospheric ratio, which in turn should reflect past ocean temperature change due to the dependence of gas solubility on temperature. The increase in krypton inventory in the glacial ocean due to higher gas solubility in colder water causes a decrease in the atmospheric inventory of krypton. Assuming Kr and N-2 inventories in the ocean-atmosphere system are conserved, we use a mass balance model to estimate a mean ocean temperature change between the LGM and today. We measured Kr/N-2 in air bubbles in Greenland (GISP2) ice from the late Holocene and LGM, using the present atmosphere as a standard. The late Holocene delta Kr/N-2 means from two sets of measurements are not different from zero (+0.07 +/- 0.30 parts per thousand and -0.14 +/- 0.93 parts per thousand), as expected from the relatively constant climate of the last millennium. The mean delta Kr/N-2 in air bubbles from the LGM is -1.34 +/- 0.37 parts per thousand. Using the mass balance model, we estimate that the mean temperature change between the LGM ocean and today's ocean was 2.7 +/- 0.6 degrees C. Although this error is large compared to the observed change, this finding is consistent with most previous estimates of LGM deep ocean temperature based on foraminiferal delta O-18 and sediment pore water delta O-18 and chlorinity.

P
Kobashi, T, Severinghaus JP, Barnola JM, Kawamura K, Carter T, Nakaegawa T.  2010.  Persistent multi-decadal Greenland temperature fluctuation through the last millennium. Climatic Change. 100:733-756.   10.1007/s10584-009-9689-9   AbstractWebsite

Future Greenland temperature evolution will affect melting of the ice sheet and associated global sea-level change. Therefore, understanding Greenland temperature variability and its relation to global trends is critical. Here, we reconstruct the last 1,000 years of central Greenland surface temperature from isotopes of N(2) and Ar in air bubbles in an ice core. This technique provides constraints on decadal to centennial temperature fluctuations. We found that northern hemisphere temperature and Greenland temperature changed synchronously at periods of similar to 20 years and 40-100 years. This quasi-periodic multi-decadal temperature fluctuation persisted throughout the last millennium, and is likely to continue into the future.

T
Severinghaus, JP, Grachev A, Battle M.  2001.  Thermal fractionation of air in polar firn by seasonal temperature gradients. Geochemistry Geophysics Geosystems. 2   10.1029/2000GC000146   AbstractWebsite

Air withdrawn from the top 5-15 m of the polar snowpack (fim) shows anomalous enrichment of heavy gases during summer, including inert gases. Following earlier work, we ascribe this to thermal diffusion, the tendency of a gas mixture to separate in a temperature gradient, with heavier molecules migrating toward colder regions. Summer warmth creates a temperature gradient in the top few meters of the firn due to the thermal inertia of the underlying firn and causes gas fractionation by thermal diffusion. Here we explore and quantify this process further in order to (1) correct for bias caused by thermal diffusion in firn air and ice core air isotope records, (2) help calibrate a new technique for measuring temperature change in ice core gas records based on thermal diffusion [Severinghaus et al., 1998], and (3) address whether air in polar snow convects during winter and, if so, whether it creates a rectification of seasonality that could bias the ice core record. We sampled air at 2-m-depth intervals from the top 15 m of the firn at two Antarctic sites, Siple Dome and South Pole, including a winter sampling at the pole. We analyzed (15)N/(14)N, (40)Ar/(36)Ar, (40)Ar/(38)Ar, (18)O/(16)O of O(2), O(2)/N(2), (84)Kr/(36)Ar, and (132)Xe/(36)Ar. The results show the expected pattern of fractionation and match a gas diffusion model based on first principles to within 30%. Although absolute values of thermal diffusion sensitivities cannot be determined from the data with precision, relative values of different gas pairs may. At Siple Dome, delta (40)Ar/4 is 66 +/- 2% as sensitive to thermal diffusion as delta (15)N, in agreement with laboratory calibration; delta (18)O/2 is 83 +/- 3%, and delta (84)Kr/48 is 33 +/- 3% as sensitive as delta (15)N. The corresponding figures for summer South Pole are 64 +/- 2%, 81 +/- 3%, and 34 +/- 3%. Accounting for atmospheric change, the figure for deltaO(2)/N(2)/4 is 90 +/- 3% at Siple Dome. Winter South Pole shows a strong depletion of heavy gases as expected. However, the data do not fit the model well in the deeper part of the profile and yield a systematic drift with depth in relative thermal diffusion sensitivities (except for Kr, constant at 34 +/- 4%), suggesting the action of some other process that is not currently understood. No evidence for wintertime convection or a rectifier effect is seen.

Caillon, N, Severinghaus JP, Jouzel J, Barnola JM, Kang JC, Lipenkov VY.  2003.  Timing of atmospheric CO2 and Antarctic temperature changes across termination III. Science. 299:1728-1731.   10.1126/science.1078758   AbstractWebsite

The analysis of air bubbles from ice cores has yielded a precise record of atmospheric greenhouse gas concentrations, but the timing of changes in these gases with respect to temperature is not accurately known because of uncertainty in the gas age-ice age difference. We have measured the isotopic composition of argon in air bubbles in the Vostok core during Termination III (similar to240,000 years before the present). This record most likely reflects the temperature and accumulation change, although the mechanism remains unclear. The sequence of events during Termination III suggests that the CO2 increase tagged Antarctic deglacial warming by 800 +/- 200 years and preceded the Northern Hemisphere deglaciation.