Publications

Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
H
Kobashi, T, Kawamura K, Severinghaus JP, Barnola JM, Nakaegawa T, Vinther BM, Johnsen SJ, Box JE.  2011.  High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core. Geophysical Research Letters. 38   10.1029/2011gl049444   AbstractWebsite

Greenland recently incurred record high temperatures and ice loss by melting, adding to concerns that anthropogenic warming is impacting the Greenland ice sheet and in turn accelerating global sea-level rise. Yet, it remains imprecisely known for Greenland how much warming is caused by increasing atmospheric greenhouse gases versus natural variability. To address this need, we reconstruct Greenland surface snow temperature variability over the past 4000 years at the GISP2 site (near the Summit of the Greenland ice sheet; hereafter referred to as Greenland temperature) with a new method that utilises argon and nitrogen isotopic ratios from occluded air bubbles. The estimated average Greenland snow temperature over the past 4000 years was -30.7 degrees C with a standard deviation of 1.0 degrees C and exhibited a long-term decrease of roughly 1.5 degrees C, which is consistent with earlier studies. The current decadal average surface temperature (2001-2010) at the GISP2 site is -29.9 degrees C. The record indicates that warmer temperatures were the norm in the earlier part of the past 4000 years, including century-long intervals nearly 1 C warmer than the present decade (20012010). Therefore, we conclude that the current decadal mean temperature in Greenland has not exceeded the envelope of natural variability over the past 4000 years, a period that seems to include part of the Holocene Thermal Maximum. Notwithstanding this conclusion, climate models project that if anthropogenic greenhouse gas emissions continue, the Greenland temperature would exceed the natural variability of the past 4000 years sometime before the year 2100. Citation: Kobashi, T., K. Kawamura, J. P. Severinghaus, J.-M. Barnola, T. Nakaegawa, B. M. Vinther, S. J. Johnsen, and J. E. Box (2011), High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core, Geophys. Res. Lett., 38, L21501, doi:10.1029/2011GL049444.

U
Hamme, RC, Emerson SR, Severinghaus JP, Long MC, Yashayaev I.  2017.  Using noble gas measurements to derive air-sea process information and predict physical gas saturations. Geophysical Research Letters. 44:9901-9909.   10.1002/2017gl075123   AbstractWebsite

Dissolved gas distributions are important because they influence oceanic habitats and Earth's climate, yet competing controls by biology and physics make gas distributions challenging to predict. Bubble-mediated gas exchange, temperature change, and varying atmospheric pressure all push gases away from equilibrium. Here we use new noble gas measurements from the Labrador Sea to demonstrate a technique to quantify physical processes. Our analysis shows that water-mass formation can be represented by a quasi steady state in which bubble fluxes and cooling push gases away from equilibrium balanced by diffusive gas exchange forcing gases toward equilibrium. We quantify the rates of these physical processes from our measurements, allowing direct comparison to gas exchange parameterizations, and predict the physically driven saturation of other gases. This technique produces predictions that reasonably match N-2/Ar observations and demonstrates that physical processes should force SF6 to be approximate to 6% more supersaturated than CFC-11 and CFC-12, impacting ventilation age calculations. Plain Language Summary Gases dissolved in the ocean are important because they influence oceanic habitats and Earth's climate. Physics and biology combine to control the amounts of gases like carbon dioxide, oxygen, and nitrogen in the ocean. Our research seeks to disentangle and quantify the competing effects of physics and biology on dissolved gases. We present very precise measurements of dissolved noble gas concentrations (neon, argon, and krypton) in the Labrador Sea, one of the few places on Earth where the surface and deep ocean communicate with each other. Because noble gases have no biological function, responding only to physical processes in the ocean, we use these measurements to discover the amounts of physical processes that affect gases during the winter at this site, like rapid cooling of the water or bubbles injected by breaking waves. From these amounts of physical processes, we calculate the concentrations of nitrogen and chlorofluorocarbons if only physical processes affected these gases. Our work will allow oceanographers to better estimate the rate that bioavailable nutrients are being removed from the ocean (a process that biologically creates nitrogen gas) and to better determine how the ocean moves from observations of changing chlorofluorocarbons in the ocean.