Publications

Export 3 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Landais, A, Caillon N, Severinghaus J, Barnola JM, Goujon C, Jouzel J, Masson-Delmotte V.  2004.  Isotopic measurements of air trapped in ice to quantify temperature changes. Comptes Rendus Geoscience. 336:963-970.   10.1016/j.crte.2004.03.013   AbstractWebsite

Isotopic measurements of air trapped in ice to quantify temperature changes. Isotopic measurements in polar ice core have shown a succession of rapid warming periods during the last glacial period over Greenland. However, this method underestimates the surface temperature variations. A new method based on gas thermal diffusion in the firn manages to quantify surface temperature variations through associated isotopic fractionations. We developed a method to extract air from the ice and to perform isotopic measurements to reduce analytical uncertainties to 0.006 and 0.020parts per thousand for delta(15)N and delta(40)Ar. It led to a 16 +/- 1.5degreesC surface temperature variation during a rapid warming (-70000 yr). (C) 2004 Academie des sciences. Publie par Elsevier SAS. Tous droits reserves.

Orsi, AJ, Cornuelle BD, Severinghaus JP.  2012.  Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide. Geophysical Research Letters. 39   10.1029/2012gl051260   AbstractWebsite

The largest climate anomaly of the last 1000 years in the Northern Hemisphere was the Little Ice Age (LIA) from 1400-1850 C. E., but little is known about the signature of this event in the Southern Hemisphere, especially in Antarctica. We present temperature data from a 300 m borehole at the West Antarctic Ice Sheet (WAIS) Divide. Results show that WAIS Divide was colder than the last 1000-year average from 1300 to 1800 C.E. The temperature in the time period 1400-1800 C.E. was on average 0.52 +/- 0.28 degrees C colder than the last 100-year average. This amplitude is about half of that seen at Greenland Summit (GRIP). This result is consistent with the idea that the LIA was a global event, probably caused by a change in solar and volcanic forcing, and was not simply a seesaw-type redistribution of heat between the hemispheres as would be predicted by some ocean-circulation hypotheses. The difference in the magnitude of the LIA between Greenland and West Antarctica suggests that the feedbacks amplifying the radiative forcing may not operate in the same way in both regions. Citation: Orsi, A. J., B. D. Cornuelle, and J. P. Severinghaus (2012), Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide, Geophys. Res. Lett., 39, L09710, doi: 10.1029/2012GL051260.

Fain, X, Ferrari CP, Dommergue A, Albert MR, Battle M, Severinghaus J, Arnaud L, Barnola JM, Cairns W, Barbante C, Boutron C.  2009.  Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s. Proceedings of the National Academy of Sciences of the United States of America. 106:16114-16119.   10.1073/pnas.0905117106   AbstractWebsite

Mercury (Hg) is an extremely toxic pollutant, and its biogeochemical cycle has been perturbed by anthropogenic emissions during recent centuries. In the atmosphere, gaseous elemental mercury (GEM; Hg degrees) is the predominant form of mercury (up to 95%). Here we report the evolution of atmospheric levels of GEM in mid- to high-northern latitudes inferred from the interstitial air of firn (perennial snowpack) at Summit, Greenland. GEM concentrations increased rapidly after World War II from approximate to 1.5 ng m(-3) reaching a maximum of approximate to 3 ng m(-3) around 1970 and decreased until stabilizing at approximate to 1.7 ng m(-3) around 1995. This reconstruction reproduces real-time measurements available from the Arctic since 1995 and exhibits the same general trend observed in Europe since 1990. Anthropogenic emissions caused a two-fold rise in boreal atmospheric GEM concentrations before the 1970s, which likely contributed to higher deposition of mercury in both industrialized and remotes areas. Once deposited, this toxin becomes available for methylation and, subsequently, the contamination of ecosystems. Implementation of air pollution regulations, however, enabled a large-scale decline in atmospheric mercury levels during the 1980s. The results shown here suggest that potential increases in emissions in the coming decades could have a similar large-scale impact on atmospheric Hg levels.