Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Buizert, C, Petrenko VV, Kavanaugh JL, Cuffey KM, Lifton NA, Brook EJ, Severinghaus JP.  2012.  In situ cosmogenic radiocarbon production and 2-D ice flow line modeling for an Antarctic blue ice area. Journal of Geophysical Research-Earth Surface. 117   10.1029/2011jf002086   AbstractWebsite

Radiocarbon measurements at ice margin sites and blue ice areas can potentially be used for ice dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic C-14 production in ice, and this component must be well understood before useful information can be extracted from C-14 data. We combine cosmic ray scaling and production estimates with a two-dimensional ice flow line model to study cosmogenic C-14 production at Taylor Glacier, Antarctica. We find (1) that C-14 production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including ice flow patterns caused by basal topography can lead to a surface C-14 activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional ice flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future C-14 and ice flow studies at ice margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric C-14 content of methane.

2009
Petrenko, VV, Smith AM, Brook EJ, Lowe D, Riedel K, Brailsford G, Hua Q, Schaefer H, Reeh N, Weiss RF, Etheridge D, Severinghaus JP.  2009.  14C-CH4 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources. Science. 324:506-508.   10.1126/science.1168909   AbstractWebsite

The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (similar to 11,600 years ago) has been the subject of much debate. The carbon-14 (C-14) content of methane ((CH4)-C-14) should distinguish between wetland and clathrate contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated by direct cosmogenic C-14 production in ice. C-14 of CO was measured to better understand this process and correct the sample (CH4)-C-14. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise.