Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
T
Taylor, KC, Mayewski PA, Alley RB, Brook EJ, Gow AJ, Grootes PM, Meese DA, Saltzman ES, Severinghaus JP, Twickler MS, White JWC, Whitlow S, Zielinski GA.  1997.  The Holocene Younger Dryas transition recorded at Summit, Greenland. Science. 278:825-827.   10.1126/science.278.5339.825   AbstractWebsite

Analysis of ice from Dye-3, Greenland, has demonstrated that the transition between the Younger Dryas and Holocene climate periods occurred over a 40-year period. A near annually resolved, multiparameter record of the transition recorded in the GISP2 core from Summit, Greenland, shows that most of the transition occurred in a series of steps with durations of about 5 years. Some climate proxies associated with more northern regions. Changes in atmospheric water vapor are likely to have played a large role in the climate transition.

Taylor, KC, White JWC, Severinghaus JP, Brook EJ, Mayewski PA, Alley RB, Steig EJ, Spencer MK, Meyerson E, Meese DA, Lamorey GW, Grachev A, Gow AJ, Barnett BA.  2004.  Abrupt climate change around 22 ka on the Siple Coast of Antarctica. Quaternary Science Reviews. 23:7-15.   10.1016/j.quascirev.2003.09.004   AbstractWebsite

A new ice core from Siple Dome, Antarctica suggests the surface temperature increased by similar to6degreesC in just several decades at approximately 22 ka BP. This abrupt change did not occur 500 kin away in the Byrd ice core, or in climate proxy records in the Siple Dome core indicative of the mid-latitude Pacific. This demonstrates there was significant spatial heterogeneity in the response of the Antarctic climate during the last deglaciation and draws attention to unexplained mechanisms of abrupt climate change in Antarctica. (C) 2003 Elsevier Ltd. All rights reserved.