Export 9 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Petrenko, VV, Martinerie P, Novelli P, Etheridge DM, Levin I, Wang Z, Blunier T, Chappellaz J, Kaiser J, Lang P, Steele LP, Hammer S, Mak J, Langenfelds RL, Schwander J, Severinghaus JP, Witrant E, Petron G, Battle MO, Forster G, Sturges WT, Lamarque JF, Steffen K, White JWC.  2013.  A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air. Atmospheric Chemistry and Physics. 13:7567-7585.   10.5194/acp-13-7567-2013   AbstractWebsite

We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140-150 nmol mol(-1), which is higher than today's values. CO mole fractions rose by 10-15 nmol mol(-1) from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a approximate to 30 nmol mol(-1) decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.

Kawamura, K, Severinghaus JP, Ishidoya S, Sugawara S, Hashida G, Motoyama H, Fujii Y, Aoki S, Nakazawa T.  2006.  Convective mixing of air in firn at four polar sites. Earth and Planetary Science Letters. 244:672-682.   10.1016/j.epsl.2006.02.017   AbstractWebsite

Air withdrawn from the firn, at four polar sites (Dome Fuji, H72 and YM85, Antarctica and North GRIP, Greenland) was measured for delta N-15 of N-2 and delta O-18 of O-2 to test for the presence of convective air mixing in the top part of the firn, known as the "convective zone". Understanding the convective zone and its possible relationship to surface conditions is important for constructing accurate ice-core greenhouse gas chronologies and their phasing with respect to climate change. The thickness of the convective zone was inferred from a regression line with barometric slope of the data in the deep firn. It is less than a few meters at H72 and NGRIP, whereas a substantial convective zone is found at Dome Fuji (8.6 +/- 2.6 m) and YM85 (14.0 +/- 1.8 m). By matching the outputs of a diffusion model to the data, effective eddy diffusivities required to mix the firn air are found. At the surface of Dome Fuji and YM85, these are found to be several times greater than the molecular diffusivity in free air. The crossover from dominance of convection to molecular diffusion takes place at 7 +/- 2, 11 +/- 2 and 0.5 +/- 0.5 m at Dome Fuji, YM85 and NGRIP, respectively. These depths can be used as an alternative definition of the convective zone thickness. The firn permeability at Dome Fuji is expected to be high because of intense firn metamorphism due to the low accumulation rate and large seasonal air temperature variation at the site. The firn layers in the top several meters are exposed to strong temperature gradients for several decades, leading to large firn grains and depth hoar that enhance permeability. The thick convective zone at YM85 is unexpected because the temperature, accumulation rate and near-surface density are comparable to NGRIP. The strong katabatic wind at YM85 is probably responsible for creating the deep convection. The largest convective zone found in this study is still only half of the current inconsistency implied from the deep ice core gas isotopes and firn densification models. (c) 2006 Elsevier B.V. All rights reserved.

NEEM_Community_Members.  2013.  Eemian interglacial reconstructed from a Greenland folded ice core. Nature. 493:489-493.   10.1038/nature11789   Abstract

Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling (‘NEEM’) ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 ± 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 ± 250 metres, reaching surface elevations 122,000 years ago of 130 ± 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

Kobashi, T, Kawamura K, Severinghaus JP, Barnola JM, Nakaegawa T, Vinther BM, Johnsen SJ, Box JE.  2011.  High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core. Geophysical Research Letters. 38   10.1029/2011gl049444   AbstractWebsite

Greenland recently incurred record high temperatures and ice loss by melting, adding to concerns that anthropogenic warming is impacting the Greenland ice sheet and in turn accelerating global sea-level rise. Yet, it remains imprecisely known for Greenland how much warming is caused by increasing atmospheric greenhouse gases versus natural variability. To address this need, we reconstruct Greenland surface snow temperature variability over the past 4000 years at the GISP2 site (near the Summit of the Greenland ice sheet; hereafter referred to as Greenland temperature) with a new method that utilises argon and nitrogen isotopic ratios from occluded air bubbles. The estimated average Greenland snow temperature over the past 4000 years was -30.7 degrees C with a standard deviation of 1.0 degrees C and exhibited a long-term decrease of roughly 1.5 degrees C, which is consistent with earlier studies. The current decadal average surface temperature (2001-2010) at the GISP2 site is -29.9 degrees C. The record indicates that warmer temperatures were the norm in the earlier part of the past 4000 years, including century-long intervals nearly 1 C warmer than the present decade (20012010). Therefore, we conclude that the current decadal mean temperature in Greenland has not exceeded the envelope of natural variability over the past 4000 years, a period that seems to include part of the Holocene Thermal Maximum. Notwithstanding this conclusion, climate models project that if anthropogenic greenhouse gas emissions continue, the Greenland temperature would exceed the natural variability of the past 4000 years sometime before the year 2100. Citation: Kobashi, T., K. Kawamura, J. P. Severinghaus, J.-M. Barnola, T. Nakaegawa, B. M. Vinther, S. J. Johnsen, and J. E. Box (2011), High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core, Geophys. Res. Lett., 38, L21501, doi:10.1029/2011GL049444.

Kawamura, K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, Severinghaus JP, Hutterli MA, Nakazawa T, Aoki S, Jouzel J, Raymo ME, Matsumoto K, Nakata H, Motoyama H, Fujita S, Goto-Azuma K, Fujii Y, Watanabe O.  2007.  Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature. 448:912-U4.   10.1038/nature06015   AbstractWebsite

The Milankovitch theory of climate change proposes that glacial interglacial cycles are driven by changes in summer insolation at high northern latitudes(1). The timing of climate change in the Southern Hemisphere at glacial-interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination(2,3), because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores(4,5). This ratio is a proxy for local summer insolation(5), and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores(6-9) and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations(3,10,11).

Fudge, TJ, Steig EJ, Markle BR, Schoenemann SW, Ding QH, Taylor KC, McConnell JR, Brook EJ, Sowers T, White JWC, Alley RB, Cheng H, Clow GD, Cole-Dai J, Conway H, Cuffey KM, Edwards JS, Edwards RL, Edwards R, Fegyveresi JM, Ferris D, Fitzpatrick JJ, Johnson J, Hargreaves G, Lee JE, Maselli OJ, Mason W, McGwire KC, Mitchell LE, Mortensen N, Neff P, Orsi AJ, Popp TJ, Schauer AJ, Severinghaus JP, Sigl M, Spencer MK, Vaughn BH, Voigt DE, Waddington ED, Wang XF, Wong GJ, Members WDP.  2013.  Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature. 500:440-+.   10.1038/nature12376   AbstractWebsite

The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate(1,2). Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago(3,4). An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently(2,5). Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere(6) associated with an abrupt decrease in Atlantic meridional overturning circulation(7). However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

Kobashi, T, Severinghaus JP, Barnola JM, Kawamura K, Carter T, Nakaegawa T.  2010.  Persistent multi-decadal Greenland temperature fluctuation through the last millennium. Climatic Change. 100:733-756.   10.1007/s10584-009-9689-9   AbstractWebsite

Future Greenland temperature evolution will affect melting of the ice sheet and associated global sea-level change. Therefore, understanding Greenland temperature variability and its relation to global trends is critical. Here, we reconstruct the last 1,000 years of central Greenland surface temperature from isotopes of N(2) and Ar in air bubbles in an ice core. This technique provides constraints on decadal to centennial temperature fluctuations. We found that northern hemisphere temperature and Greenland temperature changed synchronously at periods of similar to 20 years and 40-100 years. This quasi-periodic multi-decadal temperature fluctuation persisted throughout the last millennium, and is likely to continue into the future.

Buizert, C, Adrian B, Ahn J, Albert M, Alley RB, Baggenstos D, Bauska TK, Bay RC, Bencivengo BB, Bentley CR, Brook EJ, Chellman NJ, Clow GD, Cole-Dai J, Conway H, Cravens E, Cuffey KM, Dunbar NW, Edwards JS, Fegyveresi JM, Ferris DG, Fitzpatrick JJ, Fudge TJ, Gibson CJ, Gkinis V, Goetz JJ, Gregory S, Hargreaves GM, Iverson N, Johnson JA, Jones TR, Kalk ML, Kippenhan MJ, Koffman BG, Kreutz K, Kuhl TW, Lebar DA, Lee JE, Marcott SA, Markle BR, Maselli OJ, McConnell JR, McGwire KC, Mitchell LE, Mortensen NB, Neff PD, Nishiizumi K, Nunn RM, Orsi AJ, Pasteris DR, Pedro JB, Pettit EC, Price PB, Priscu JC, Rhodes RH, Rosen JL, Schauer AJ, Schoenemann SW, Sendelbach PJ, Severinghaus JP, Shturmakov AJ, Sigl M, Slawny KR, Souney JM, Sowers TA, Spencer MK, Steig EJ, Taylor KC, Twickler MS, Vaughn BH, Voigt DE, Waddington ED, Welten KC, Wendricks AW, White JWC, Winstrup M, Wong GJ, Woodruff TE, Members WDP.  2015.  Precise interpolar phasing of abrupt climate change during the last ice age. Nature. 520:661-U169.   10.1038/nature14401   AbstractWebsite

The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeodimate archives'. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa''', suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw(4-6). Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events'. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision''''". Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 +/- 92 years (2 sigma a) for DansgaardOeschger events, including the Bolling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 +/- 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.

Bertler, NAN, Conway H, Dahl-Jensen D, Emanuelsson DB, Winstrup M, Vallelonga PT, Lee JE, Brook EJ, Severinghaus JP, Fudge TJ, Keller ED, Baisden WT, Hindmarsh RCA, Neff PD, Blunier T, Edwards R, Mayewski PA, Kipfstuhl S, Buizert C, Canessa S, Dadic R, Kjaer HA, Kurbatov A, Zhang DQ, Waddington ED, Baccolo G, Beers T, Brightley HJ, Carter L, Clemens-Sewall D, Ciobanu VG, Delmonte B, Eling L, Ellis A, Ganesh S, Golledge NR, Haines S, Handley M, Hawley RL, Hogan CM, Johnson KM, Korotkikh E, Lowry DP, Mandeno D, McKay RM, Menking JA, Naish TR, Noerling C, Ollive A, Orsi A, Proemse BC, Pyne AR, Pyne RL, Renwick J, Scherer RP, Semper S, Simonsen M, Sneed SB, Steig EJ, Tuohy A, Venugopal AU, Valero-Delgado F, Venkatesh J, Wang FT, Wang SM, Winski DA, Winton VHL, Whiteford A, Xiao CD, Yang J, Zhang X.  2018.  The Ross Sea Dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years. Climate of the Past. 14:193-214.   10.5194/cp-14-193-2018   AbstractWebsite

High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.