Publications

Export 23 results:
Sort by: [ Author  (Asc)] Title Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Baggenstos, D, Severinghaus JP, Mulvaney R, McConnell JR, Sigl M, Maselli O, Petit JR, Grente B, Steig EJ.  2018.  A horizontal ice core from Taylor Glacier, its implications for Antarctic climate history, and an improved Taylor Dome ice core time scale. Paleoceanography and Paleoclimatology. 33:778-794.   10.1029/2017pa003297   AbstractWebsite

Ice core records from Antarctica show mostly synchronous temperature variations during the last deglacial transition, an indication that the climate of the entire continent reacted as one unit to the global changes. However, a record from the Taylor Dome ice core in the Ross Sea sector of East Antarctica has been suggested to show a rapid warming, similar in style and synchronous with the Oldest Dryas-Bolling warming in Greenland. Since publication of the Taylor Dome record, a number of lines of evidence have suggested that this interpretation is incorrect and reflects errors in the underlying time scale. The issues raised regarding the dating of Taylor Dome currently linger unresolved, and the original time scale remains the de facto chronology. We present new water isotope and chemistry data from nearby Taylor Glacier to resolve the confusion surrounding the Taylor Dome time scale. We find that the Taylor Glacier record is incompatible with the original interpretation of the Taylor Dome ice core, showing that the warming in the area was gradual and started at similar to 18 ka BP (before 1950) as seen in other East Antarctic ice cores. We build a consistent, up-to-date Taylor Dome chronology from 0 to 60 ka BP by combining new and old age markers based on synchronization to other ice core records. The most notable feature of the new TD2015 time scale is a gas age-ice age difference of up to 12,000 years during the Last Glacial Maximum, by far the largest ever observed.

Baggenstos, D, Bauska TK, Severinghaus JP, Lee JE, Schaefer H, Buizert C, Brook EJ, Shackleton S, Petrenko VV.  2017.  Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Climate of the Past. 13:943-958.   10.5194/cp-13-943-2017   AbstractWebsite

Old ice for paleo-environmental studies, traditionally accessed through deep core drilling on domes and ridges on the large ice sheets, can also be retrieved at the surface from ice sheet margins and blue ice areas. The practically unlimited amount of ice available at these sites satisfies a need in the community for studies of trace components requiring large sample volumes. For margin sites to be useful as ancient ice archives, the ice stratigraphy needs to be understood and age models need to be established. We present measurements of trapped gases in ice from Taylor Glacier, Antarctica, to date the ice and assess the completeness of the stratigraphic section. Using delta O-18 of O-2 and methane concentrations, we unambiguously identify ice from the last glacial cycle, covering every climate interval from the early Holocene to the penultimate interglacial. A high-resolution transect reveals the last deglaciation and the Last Glacial Maximum (LGM) in detail. We observe large-scale deformation in the form of folding, but individual stratigraphic layers do not appear to have undergone irregular thinning. Rather, it appears that the entire LGM-deglaciation sequence has been transported from the interior of the ice sheet to the surface of Taylor Glacier relatively undisturbed. We present an age model that builds the foundation for gas studies on Taylor Glacier. A comparison with the Taylor Dome ice core confirms that the section we studied on Taylor Glacier is better suited for paleo-climate reconstructions of the LGM due to higher accumulation rates.

Battle, MO, Severinghaus JP, Sofen ED, Plotkin D, Orsi AJ, Aydin M, Montzka SA, Sowers T, Tans PP.  2011.  Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide. Atmospheric Chemistry and Physics. 11:11007-11021.   10.5194/acp-11-11007-2011   AbstractWebsite

We sampled interstitial air from the perennial snowpack (firn) at a site near the West Antarctic Ice Sheet Divide (WAIS-D) and analyzed the air samples for a wide variety of gas species and their isotopes. We find limited convective influence (1.4-5.2 m, depending on detection method) in the shallow firn, gravitational enrichment of heavy species throughout the diffusive column in general agreement with theoretical expectations, a similar to 10 m thick lock-in zone beginning at similar to 67 m, and a total firn thickness consistent with predictions of Kaspers et al. (2004). Our modeling work shows that the air has an age spread (spectral width) of 4.8 yr for CO2 at the firn-ice transition. We also find that advection of firn air due to the 22 cm yr(-1) ice-equivalent accumulation rate has a minor impact on firn air composition, causing changes that are comparable to other modeling uncertainties and intrinsic sample variability. Furthermore, estimates of 1 age (the gas age/ice age difference) at WAIS-D appear to be largely unaffected by bubble closure above the lock-in zone. Within the lock-in zone, small gas species and their isotopes show evidence of size-dependent fractionation due to permeation through the ice lattice with a size threshold of 0.36 nm, as at other sites. We also see an unequivocal and unprecedented signal of oxygen isotope fractionation within the lock-in zone, which we interpret as the mass-dependent expression of a size-dependent fractionation process.

Bauska, TK, Baggenstos D, Brook EJ, Mix AC, Marcott SA, Petrenko VV, Schaefer H, Severinghaus JP, Lee JE.  2016.  Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proceedings of the National Academy of Sciences of the United States of America. 113:3465-3470.   10.1073/pnas.1513868113   AbstractWebsite

An understanding of the mechanisms that control CO2 change during glacial-interglacial cycles remains elusive. Here we help to constrain changing sources with a high-precision, high-resolution deglacial record of the stable isotopic composition of carbon in CO2 (delta C-13-CO2) in air extracted from ice samples from Taylor Glacier, Antarctica. During the initial rise in atmospheric CO2 from 17.6 to 15.5 ka, these data demarcate a decrease in delta C-13-CO2, likely due to a weakened oceanic biological pump. From 15.5 to 11.5 ka, the continued atmospheric CO2 rise of 40 ppm is associated with small changes in delta C-13-CO2, consistent with a nearly equal contribution from a further weakening of the biological pump and rising ocean temperature. These two trends, related to marine sources, are punctuated at 16.3 and 12.9 ka with abrupt, century-scale perturbations in delta C-13-CO2 that suggest rapid oxidation of organic land carbon or enhanced air-sea gas exchange in the Southern Ocean. Additional century-scale increases in atmospheric CO2 coincident with increases in atmospheric CH4 and Northern Hemisphere temperature at the onset of the Bolling (14.6-14.3 ka) and Holocene (11.6-11.4 ka) intervals are associated with small changes in delta C-13-CO2, suggesting a combination of sources that included rising surface ocean temperature.

Bauska, TK, Brook EJ, Marcott SA, Baggenstos D, Shackleton S, Severinghaus JP, Petrenko VV.  2018.  Controls on millennial-scale atmospheric CO2 variability during the last glacial period. Geophysical Research Letters. 45:7731-7740.   10.1029/2018gl077881   AbstractWebsite

Changes in atmospheric CO2 on millennial-to-centennial timescales are key components of past climate variability during the last glacial and deglacial periods (70-10 ka), yet the sources and mechanisms responsible for the CO2 fluctuations remain largely obscure. Here we report the C-13/C-12 ratio of atmospheric CO2 during a key interval of the last glacial period at submillennial resolution, with coeval histories of atmospheric CO2, CH4, and N2O concentrations. The carbon isotope data suggest that the millennial-scale CO2 variability in Marine Isotope Stage 3 is driven largely by changes in the organic carbon cycle, most likely by sequestration of respired carbon in the deep ocean. Centennial-scale CO2 variations, distinguished by carbon isotope signatures, are associated with both abrupt hydrological change in the tropics (e.g., Heinrich events) and rapid increases in Northern Hemisphere temperature (Dansgaard-Oeschger events). These events can be linked to modes of variability during the last deglaciation, thus suggesting that drivers of millennial and centennial CO2 variability during both periods are intimately linked to abrupt climate variability. Plain Language Summary Ice cores provide unique records of variations in atmospheric CO2 prior to the instrumental era. While it is clear that changes in atmospheric CO2 played a significant role in driving past climate change, it is unclear what in turn drove changes in atmospheric CO2. Here we investigate enigmatic changes in atmospheric CO2 levels during an interval of the last glacial period (similar to 50,000 to 35,000 years ago) that are associated with abrupt changes in polar climate. To determine the sources and sinks for atmospheric CO2, we measured the stable isotopes of carbon in CO2 and found that the primary source of carbon to the atmosphere was an organic carbon reservoir. Most likely, this carbon was sourced from a deep ocean reservoir that waxed and waned following changes in either the productivity of the surface ocean or stratification of the deep ocean. We also found that atmospheric CO2 can change on the centennial timescale during abrupt climate transitions in the Northern Hemisphere. This observation adds to a growing body of evidence that abrupt changes in atmospheric CO2 are an important component of past carbon cycle variability.

Bereiter, B, Shackleton S, Baggenstos D, Kawamura K, Severinghaus J.  2018.  Mean global ocean temperatures during the last glacial transition. Nature. 553:39-+.   10.1038/nature25152   AbstractWebsite

Little is known about the ocean temperature's long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 +/- 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism-and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO2, thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.

Bereiter, B, Kawamura K, Severinghaus JP.  2018.  New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples. Rapid Communications in Mass Spectrometry. 32:801-814.   10.1002/rcm.8099   AbstractWebsite

RationaleThe global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores, can be used to reconstruct past mean ocean temperatures (MOTs). Here we introduce two successively developed methods to measure these parameters with a sufficient precision to provide new constraints on past changes in MOT. MethodsThe air from an 800-g ice sample - containing roughly 80mL STP air - is extracted and processed to be analyzed on two independent dual-inlet isotope ratio mass spectrometers. The primary isotope ratios (N-15, Ar-40 and Kr-86 values) are obtained with precisions in the range of 1 per meg (0.001) per mass unit. The three elemental ratio values Kr/N-2, Xe/N-2 and Xe/Kr are obtained using sequential (non-simultaneous) peak-jumping, reaching precisions in the range of 0.1-0.3. ResultsThe latest version of the method achieves a 30% to 50% better precision on the elemental ratios and a twofold better sample throughput than the previous one. The method development uncovered an unexpected source of artefactual gas fractionation in a closed system that is caused by adiabatic cooling and warming of gases (termed adiabatic fractionation) - a potential source of measurement artifacts in other methods. ConclusionsThe precisions of the three elemental ratios Kr/N-2, Xe/N-2 and Xe/Kr - which all contain the same MOT information - suggest smaller uncertainties for reconstructed MOTs (+/- 0.3-0.1 degrees C) than previous studies have attained. Due to different sensitivities of the noble gases to changes in MOT, Xe/N-2 provides the best constraints on the MOT under the given precisions followed by Xe/Kr, and Kr/N-2; however, using all of them helps to detect methodological artifacts and issues with ice quality.

Bertler, NAN, Conway H, Dahl-Jensen D, Emanuelsson DB, Winstrup M, Vallelonga PT, Lee JE, Brook EJ, Severinghaus JP, Fudge TJ, Keller ED, Baisden WT, Hindmarsh RCA, Neff PD, Blunier T, Edwards R, Mayewski PA, Kipfstuhl S, Buizert C, Canessa S, Dadic R, Kjaer HA, Kurbatov A, Zhang DQ, Waddington ED, Baccolo G, Beers T, Brightley HJ, Carter L, Clemens-Sewall D, Ciobanu VG, Delmonte B, Eling L, Ellis A, Ganesh S, Golledge NR, Haines S, Handley M, Hawley RL, Hogan CM, Johnson KM, Korotkikh E, Lowry DP, Mandeno D, McKay RM, Menking JA, Naish TR, Noerling C, Ollive A, Orsi A, Proemse BC, Pyne AR, Pyne RL, Renwick J, Scherer RP, Semper S, Simonsen M, Sneed SB, Steig EJ, Tuohy A, Venugopal AU, Valero-Delgado F, Venkatesh J, Wang FT, Wang SM, Winski DA, Winton VHL, Whiteford A, Xiao CD, Yang J, Zhang X.  2018.  The Ross Sea Dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years. Climate of the Past. 14:193-214.   10.5194/cp-14-193-2018   AbstractWebsite

High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

Birner, B, Buizert C, Wagner TJW, Severinghaus JP.  2018.  The influence of layering and barometric pumping on firn air transport in a 2-D model. Cryosphere. 12:2021-2037.   10.5194/tc-12-2021-2018   AbstractWebsite

Ancient air trapped in ice core bubbles has been paramount to developing our understanding of past climate and atmospheric composition. Before air bubbles become isolated in ice, the atmospheric signal is altered in the firn column by transport processes such as advection and diffusion. However, the influence of low-permeability layers and barometric pumping (driven by surface pressure variability) on firn air transport is not well understood and is not readily captured in conventional one-dimensional (1-D) firn air models. Here we present a two-dimensional (2-D) trace gas advection-diffusion-dispersion model that accounts for discontinuous horizontal layers of reduced permeability. We find that layering or barometric pumping individually yields too small a reduction in gravitational settling to match observations. In contrast, when both effects are active, the model's gravitational fractionation is suppressed as observed. Layering focuses airflows in certain regions in the 2-D model, which acts to amplify the dispersive mixing resulting from barometric pumping. Hence, the representation of both factors is needed to obtain a realistic emergence of the lock-in zone. In contrast to expectations, we find that the addition of barometric pumping in the layered 2-D model does not substantially change the differential kinetic fractionation of fast-and slow-diffusing trace gases. Like 1-D models, the 2-D model substantially underestimates the amount of differential kinetic fractionation seen in actual observations, suggesting that further subgrid-scale processes may be missing in the current generation of firn air transport models. However, we find robust scaling relationships between kinetic isotope fractionation of different noble gas isotope and elemental ratios. These relationships may be used to correct for kinetic fractionation in future high-precision ice core studies and can amount to a bias of up to 0.45 degrees C in noble-gas-based mean ocean temperature reconstructions at WAIS Divide, Antarctica.

Broecker, WS, Severinghaus JP.  1992.  Diminishing oxygen (News and Views). Nature. 358:710-711.   10.1038/358710a0   Abstract
n/a
Brook, EJ, Harder S, Severinghaus J, Steig EJ, Sucher CM.  2000.  On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochemical Cycles. 14:559-572.   10.1029/1999gb001182   AbstractWebsite

We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bolling-Allerod period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200-300 ppb over time periods of 100-300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large-scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient tan indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Bolling-Allerod period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods.

Brook, EJ, Severinghaus JP.  2011.  Methane and megafauna. Nature Geoscience. 4:271-272.   10.1038/ngeo1140   AbstractWebsite
n/a
Brook, EJ, White JWC, Schilla ASM, Bender ML, Barnett B, Severinghaus JP, Taylor KC, Alley RB, Steig EJ.  2005.  Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period. Quaternary Science Reviews. 24:1333-1343.   10.1016/j.quascirev.2005.02.002   AbstractWebsite

Using atmospheric methane and the isotopic composition of O-2 as correlation tools, we place the 6D record of ice from the Siple Dome (West Antarctica) ice core on a precise common chronology with the GISP2 (Greenland) ice core for the period from 9 to 57 ka. The onset of major millennial warming events in Siple Dome preceded major abrupt warmings in Greenland, and the pattern of millennial change at Siple Dome was broadly similar, though not identical, to that previously observed for the Byrd ice core (also in West Antarctica). The addition of Siple Dome to the database of well-dated Antarctic paleoclimate records supports the case for a coherent regional pattern of millennial-scale climate change in Antarctica during much of the last ice age and glacial-interglacial transition.

Brook, EJ, Severinghaus JP, Harder S, Bender M.  1999.  Atmospheric methane and millenial scale climate change. Mechanisms of global climate change at millennial time scales. ( Clark PU, Webb RS, Keigwin LD, Eds.).:165-176., Washington, D.C.: American Geophysical Union Abstract
n/a
Buerki, PR, Jackson BC, Schilling T, Rufer T, Severinghaus JP.  2006.  Improved helium exchange gas cryostat and sample tube designs for automated gas sampling and cryopumping. Geochemistry Geophysics Geosystems. 7   10.1029/2006gc001341   AbstractWebsite

[ 1] In order to eliminate the use of liquid helium for the extraction of atmospheric gases from polar ice cores, two units of a redesigned top load helium exchange gas cryostat were built and tested. The cryostats feature the shortest and largest diameter sample wells built to date, a base temperature below 7 Kelvin, and a sample well without baffles. The cryostats allowed shortening the length and thus increasing the gas pressure inside our sample tubes by 58% and increasing the amount of sample ending up in the mass spectrometer by 4.4%. The cryostats can either be used as mobile stand-alone units for manual gas processing lines or integrated into a fully automated vacuum extraction and gas analysis line. For the latter application the cryostat was equipped with a custom-designed automated changeover system.

Buizert, C, Baggenstos D, Jiang W, Purtschert R, Petrenko VV, Lu ZT, Muller P, Kuhl T, Lee J, Severinghaus JP, Brook EJ.  2014.  Radiometric Kr-81 dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proceedings of the National Academy of Sciences of the United States of America. 111:6876-6881.   10.1073/pnas.1320329111   AbstractWebsite

We present successful Kr-81-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four similar to 350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The Kr-81 radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 +/- 2.5 ka. Our experimental methods and sampling strategy are validated by (i) Kr-85 and Ar-39 analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the Kr-81 ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA Kr-81 analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, Kr-81 dating of ice cores is a future possibility.

Buizert, C, Gkinis V, Severinghaus JP, He F, Lecavalier BS, Kindler P, Leuenberger M, Carlson AE, Vinther B, Masson-Delmotte V, White JWC, Liu ZY, Otto-Bliesner B, Brook EJ.  2014.  Greenland temperature response to climate forcing during the last deglaciation. Science. 345:1177-1180.   10.1126/science.1254961   AbstractWebsite

Greenland ice core water isotopic composition (delta O-18) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional delta O-18 interpretation, the Younger Dryas period was 4.5 degrees +/- 2 degrees C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9 degrees to 14 degrees C) than in the northwest (5 degrees to 9 degrees C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon.

Buizert, C, Martinerie P, Petrenko VV, Severinghaus JP, Trudinger CM, Witrant E, Rosen JL, Orsi AJ, Rubino M, Etheridge DM, Steele LP, Hogan C, Laube JC, Sturges WT, Levchenko VA, Smith AM, Levin I, Conway TJ, Dlugokencky EJ, Lang PM, Kawamura K, Jenk TM, White JWC, Sowers T, Schwander J, Blunier T.  2012.  Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland. Atmospheric Chemistry and Physics. 12:4259-4277.   10.5194/acp-12-4259-2012   AbstractWebsite

Air was sampled from the porous firn layer at the NEEM site in Northern Greenland. We use an ensemble of ten reference tracers of known atmospheric history to characterise the transport properties of the site. By analysing uncertainties in both data and the reference gas atmospheric histories, we can objectively assign weights to each of the gases used for the depth-diffusivity reconstruction. We define an objective root mean square criterion that is minimised in the model tuning procedure. Each tracer constrains the firn profile differently through its unique atmospheric history and free air diffusivity, making our multiple-tracer characterisation method a clear improvement over the commonly used single-tracer tuning. Six firn air transport models are tuned to the NEEM site; all models successfully reproduce the data within a 1 sigma Gaussian distribution. A comparison between two replicate boreholes drilled 64 m apart shows differences in measured mixing ratio profiles that exceed the experimental error. We find evidence that diffusivity does not vanish completely in the lock-in zone, as is commonly assumed. The ice age- gas age difference (Delta age) at the firn-ice transition is calculated to be 182(-9)(+3) yr. We further present the first intercomparison study of firn air models, where we introduce diagnostic scenarios designed to probe specific aspects of the model physics. Our results show that there are major differences in the way the models handle advective transport. Furthermore, diffusive fractionation of isotopes in the firn is poorly constrained by the models, which has consequences for attempts to reconstruct the isotopic composition of trace gases back in time using firn air and ice core records.

Buizert, C, Severinghaus JP.  2016.  Dispersion in deep polar firn driven by synoptic-scale surface pressure variability. Cryosphere. 10:2099-2111.   10.5194/tc-10-2099-20160   AbstractWebsite

Commonly, three mechanisms of firn air transport are distinguished: molecular diffusion, advection, and near-surface convective mixing. Here we identify and describe a fourth mechanism, namely dispersion driven by synoptic-scale surface pressure variability (or barometric pumping). We use published gas chromatography experiments on firn samples to derive the along-flow dispersivity of firn, and combine this dispersivity with a dynamical air pressure propagation model forced by surface air pressure time series to estimate the magnitude of dispersive mixing in the firn. We show that dispersion dominates mixing within the firn lock-in zone. Trace gas concentrations measured in firn air samples from various polar sites confirm that dispersive mixing occurs. Including dispersive mixing in a firn air transport model suggests that our theoretical estimates have the correct order of magnitude, yet may overestimate the true dispersion. We further show that strong barometric pumping, such as at the Law Dome site, may reduce the gravitational enrichment of delta N-15-N-2 and other tracers below gravitational equilibrium, questioning the traditional definition of the lock-in depth as the depth where delta N-15 enrichment ceases. Last, we propose that Kr-86 excess may act as a proxy for past synoptic activity (or paleo-storminess) at the site.

Buizert, C, Cuffey KM, Severinghaus JP, Baggenstos D, Fudge TJ, Steig EJ, Markle BR, Winstrup M, Rhodes RH, Brook EJ, Sowers TA, Clow GD, Cheng H, Edwards RL, Sigl M, McConnell JR, Taylor KC.  2015.  The WAIS Divide deep ice core WD2014 chronology - Part 1: Methane synchronization (68-31 kaBP) and the gas age-ice age difference. Climate of the Past. 11:153-173.   10.5194/cp-11-153-2015   AbstractWebsite

The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past similar to 68 ka at unprecedented temporal resolution. The upper 2850m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of delta N-15-N-2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U = Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the "bipolar seesaw".

Buizert, C, Petrenko VV, Kavanaugh JL, Cuffey KM, Lifton NA, Brook EJ, Severinghaus JP.  2012.  In situ cosmogenic radiocarbon production and 2-D ice flow line modeling for an Antarctic blue ice area. Journal of Geophysical Research-Earth Surface. 117   10.1029/2011jf002086   AbstractWebsite

Radiocarbon measurements at ice margin sites and blue ice areas can potentially be used for ice dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic C-14 production in ice, and this component must be well understood before useful information can be extracted from C-14 data. We combine cosmic ray scaling and production estimates with a two-dimensional ice flow line model to study cosmogenic C-14 production at Taylor Glacier, Antarctica. We find (1) that C-14 production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including ice flow patterns caused by basal topography can lead to a surface C-14 activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional ice flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future C-14 and ice flow studies at ice margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric C-14 content of methane.

Buizert, C, Adrian B, Ahn J, Albert M, Alley RB, Baggenstos D, Bauska TK, Bay RC, Bencivengo BB, Bentley CR, Brook EJ, Chellman NJ, Clow GD, Cole-Dai J, Conway H, Cravens E, Cuffey KM, Dunbar NW, Edwards JS, Fegyveresi JM, Ferris DG, Fitzpatrick JJ, Fudge TJ, Gibson CJ, Gkinis V, Goetz JJ, Gregory S, Hargreaves GM, Iverson N, Johnson JA, Jones TR, Kalk ML, Kippenhan MJ, Koffman BG, Kreutz K, Kuhl TW, Lebar DA, Lee JE, Marcott SA, Markle BR, Maselli OJ, McConnell JR, McGwire KC, Mitchell LE, Mortensen NB, Neff PD, Nishiizumi K, Nunn RM, Orsi AJ, Pasteris DR, Pedro JB, Pettit EC, Price PB, Priscu JC, Rhodes RH, Rosen JL, Schauer AJ, Schoenemann SW, Sendelbach PJ, Severinghaus JP, Shturmakov AJ, Sigl M, Slawny KR, Souney JM, Sowers TA, Spencer MK, Steig EJ, Taylor KC, Twickler MS, Vaughn BH, Voigt DE, Waddington ED, Welten KC, Wendricks AW, White JWC, Winstrup M, Wong GJ, Woodruff TE, Members WDP.  2015.  Precise interpolar phasing of abrupt climate change during the last ice age. Nature. 520:661-U169.   10.1038/nature14401   AbstractWebsite

The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeodimate archives'. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa''', suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw(4-6). Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events'. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision''''". Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 +/- 92 years (2 sigma a) for DansgaardOeschger events, including the Bolling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 +/- 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.

Butler, JH, Battle M, Bender ML, Montzka SA, Clarke AD, Saltzman ES, Sucher CM, Severinghaus JP, Elkins JW.  1999.  A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature. 399:749-755.   10.1038/21586   AbstractWebsite

Measurements of trace gases in air trapped in polar firn (unconsolidated snow) demonstrate that natural sources of chlorofluorocarbons, halons, persistent chlorocarbon solvents and sulphur hexafluoride to the atmosphere are minimal or non-existent. Atmospheric concentrations of these gases, reconstructed back to the late nineteenth century, are consistent with atmospheric histories derived from anthropogenic emission rates and known atmospheric lifetimes. The measurements confirm the predominance of human activity in the atmospheric budget of organic chlorine, and allow the estimation of atmospheric histories of halogenated gases of combined anthropogenic and natural origin. The pre-twentieth-century burden of methyl chloride was close to that at present, while the burden of methyl bromide was probably over half of today's value.