Precise interpolar phasing of abrupt climate change during the last ice age

Citation:
Buizert, C, Adrian B, Ahn J, Albert M, Alley RB, Baggenstos D, Bauska TK, Bay RC, Bencivengo BB, Bentley CR, Brook EJ, Chellman NJ, Clow GD, Cole-Dai J, Conway H, Cravens E, Cuffey KM, Dunbar NW, Edwards JS, Fegyveresi JM, Ferris DG, Fitzpatrick JJ, Fudge TJ, Gibson CJ, Gkinis V, Goetz JJ, Gregory S, Hargreaves GM, Iverson N, Johnson JA, Jones TR, Kalk ML, Kippenhan MJ, Koffman BG, Kreutz K, Kuhl TW, Lebar DA, Lee JE, Marcott SA, Markle BR, Maselli OJ, McConnell JR, McGwire KC, Mitchell LE, Mortensen NB, Neff PD, Nishiizumi K, Nunn RM, Orsi AJ, Pasteris DR, Pedro JB, Pettit EC, Price PB, Priscu JC, Rhodes RH, Rosen JL, Schauer AJ, Schoenemann SW, Sendelbach PJ, Severinghaus JP, Shturmakov AJ, Sigl M, Slawny KR, Souney JM, Sowers TA, Spencer MK, Steig EJ, Taylor KC, Twickler MS, Vaughn BH, Voigt DE, Waddington ED, Welten KC, Wendricks AW, White JWC, Winstrup M, Wong GJ, Woodruff TE, Members WDP.  2015.  Precise interpolar phasing of abrupt climate change during the last ice age. Nature. 520:661-U169.

Date Published:

2015/04

Keywords:

Antarctic Ice, atmospheric co2, bipolar seesaw, chronology aicc2012, core record, glacial period, greenland, ocean model, polar ice, wais divide

Abstract:

The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeodimate archives'. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa''', suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw(4-6). Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events'. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision''''". Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 +/- 92 years (2 sigma a) for DansgaardOeschger events, including the Bolling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 +/- 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.

Notes:

n/a

Website

DOI:

10.1038/nature14401