A Regional Slocum Glider Network in the Mid-Atlantic Bight Leverages Broad Community Engagement

Citation:
Schofield, O, Kohut J, Glenn S, Morell J, Capella J, Corredor J, Orcutt J, Arrott M, Krueger I, Meisinger M, Peach C, Vernon F, Chave A, Chao Y, Chien S, Thompson D, Brown W, Oliver M, Boicourt W.  2010.  A Regional Slocum Glider Network in the Mid-Atlantic Bight Leverages Broad Community Engagement. Marine Technology Society Journal. 44:185-195.

Date Published:

Nov-Dec

Keywords:

chlorophyll, cold pool, continental-shelf, georges bank, gulf-stream, hypotheses, IOOS, ocean modeling system, Ocean observatories, transition, variability, waters, Webb gliders

Abstract:

Autonomous underwater gliders have proven to be a cost-effective technology for measuring the 3-D ocean and now represent a critical component during the design and implementation of the Mid-Atlantic Regional Ocean Observing System (MARCOOS), a Region of the U.S. Integrated Ocean Observing System. The gliders have been conducting regional surveys of the Mid-Atlantic (MA) Bight, and during the 3 years of MARCOOS, the glider fleet has conducted 22 missions spanning 10,867 km and collecting 62,824 vertical profiles of data. In addition to collecting regional data, the gliders have facilitated collaboration for partners outside of MARCOOS. The existence of the MA glider observatory provided a unique test bed for cyber-infrastructure tools being developed as part of the National Science Foundation's Ocean Observatory Initiative. This effort allowed the Ocean Observatory Initiative software to integrate the MARCOOS assets and provided a successful demonstration of an ocean sensor net. The hands-on experience of the MA glider technicians supported training and provided assistance of collaborators within the Caribbean Regional Association, also a region of the U.S. Integrated Ocean Observing System, to assess the efficacy of gliders to resolve internal waves. Finally, the glider fleet has enabled sensor development and testing in a cost-effective manner. Generally, new sensors were tested within the MARCOOS domain before they were deployed in more extreme locations throughout the world's oceans. On the basis of this experience, the goal of the MARCOOS glider team will be to expand the MA network in coming years. The potential of how an expanded network of gliders might serve national needs was illustrated during the 2010 Macondo Gulf of Mexico oil spill, where gliders from many institutions collected subsurface mesoscale data to support regional models and oil response planning. The experience gained over the last 5 years suggests that it is time to develop a national glider network.

Notes:

n/a

Website