Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol

Citation:
Hossaini, R, Chipperfield MP, Saiz-Lopez A, Harrison JJ, von Glasow R, Sommariva R, Atlas E, Navarro M, Montzka SA, Feng W, Dhomse S, Harth C, Mühle J, Lunder C, O'Doherty S, Young D, Reimann S, Vollmer MK, Krummel PB, Bernath GPFC.  2015.  Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol. Geophysical Research Letters. 42(11):4573-4580.

Keywords:

0365 Troposphere: composition and chemistry, 0368 Troposphere: constituent transport and chemistry, Dichloromethane, montreal protocol, Ozone, phosgene, stratosphere, VSLS

Abstract:

We have developed a chemical mechanism describing the tropospheric degradation of chlorine-containing very short-lived substances (VSLS). The scheme was included in a global atmospheric model and used to quantify the stratospheric injection of chlorine from anthropogenic VSLS (ClyVSLS) between 2005 to 2013. By constraining the model with surface measurements of chloroform (CHCl3), dichloromethane (CH2Cl2), tetrachloroethene (C2Cl4), trichloroethene (C2HCL3) and 1,2-dichloroethane (CH2ClCH2Cl), we infer a 2013 ClyVSLS mixing ratio of 123 parts per trillion (ppt). Stratospheric injection of source gases dominates this supply, accounting for ~83% of the total. The remainder comes from VSLS-derived organic products, phosgene (COCl2, 7%) and formyl chloride (CHClO, 2%), and also hydrogen chloride (HCl, 8%). Stratospheric ClyVSLS increased by ~52% between 2005-2013, with a mean growth rate of 3.7 ppt Cl/yr. This increase is due to recent and ongoing growth in anthropogenic CH – the most abundant chlorinated VSLS not controlled by the Montreal Protocol.

Notes:

n/a

Website

DOI:

10.1002/2015gl063783