Project Scientist

Research Interests

  • AGAGE (Advanced Global Atmospheric Gases Experiment)
  • Global Warming, Climate Change, Greenhouse Gases (GHGs)
  • Stratospheric Ozone Depletion, Ozone Depleting Substances (ODSs)
  • Global and regional emissions, loss processes, and lifetimes of ODSs and GHGs
  • Top-down (measurement based) verification of bottom-up emission estimates
  • Top-down (measurement based) verification of compliance with the Montreal Protocol on Substances that Deplete the Ozone Layer and the Paris Agreement
  • Halogenated trace gases
  • Perfluorinated Compounds (PFCs) and their emissions from global aluminium, rare-earth, and semi-conductor industries
  • Trace gas measurement techniques (GC-FID/ECD, GC/MSD, GC/TOF-MS, PTR-TOF-MS, CRDS)
  • Atmospheric chemistry
  • Wildfire emissions
  • Long-range transport of pollutants


  • Diploma in Chemistry, University of Wuppertal
  • Doctor of Natural Sciences, Max Planck Institute for Chemistry, Mainz and Johannes Gutenberg University Mainz

Recent Publications

Leedham Elvidge, E, Bönisch H, Brenninkmeijer CAM, Engel A, Fraser PJ, Gallacher E, Langenfelds R, Mühle J, Oram DE, Ray EA, Ridley AR, Röckmann T, Sturges WT, Weiss RF, Laube JC.  2018.  Evaluation of stratospheric age of air from CF4, C2F6, C3F8, CHF3, HFC-125, HFC-227ea and SF6; implications for the calculations of halocarbon lifetimes, fractional release facto. Atmospheric Chemistry and Physics. 18:3369-3385.: Copernicus Publications AbstractWebsite

In a changing climate, potential stratospheric circulation changes require long-term monitoring. Stratospheric trace gas measurements are often used as a proxy for stratospheric circulation changes via the “mean age of air” values derived from them. In this study, we investigated five potential age of air tracers – the perfluorocarbons CF4, C2F6 andC3F8 and the hydrofluorocarbons CHF3 (HFC-23) and HFC-125 – and compare them to the traditional tracer SF6 and a (relatively) shorter-lived species, HFC-227ea. A detailed uncertainty analysis was performed on mean ages derived from these “new” tracers to allow us to confidently compare their efficacy as age tracers to the existing tracer, SF6. Our resultsshowed that uncertainties associated with the mean age derived from these new age tracers are similar to those derived from SF6, suggesting that these alternative compounds are suitable in this respect for use as age tracers. Independent verification of the suitability of these age tracers is provided by a comparison between samples analysed at the Universityof East Anglia and the Scripps Institution of Oceanography. All five tracers give younger mean ages than SF6, a discrepancy that increases with increasing mean age. Our findings qualitatively support recent work that suggests that the stratospheric lifetime of SF6 is significantly less than the previous estimate of 3200 years. The impact of these younger meanages on three policy-relevant parameters – stratospheric lifetimes, fractional release factors (FRFs) and ozone depletion potentials – is investigated in combination with a recently improved methodology to calculate FRFs. Updates to previous estimations for these parameters are provided.

Vollmer, MK, Young D, Trudinger CM, Mühle J, Henne S, Rigby M, Park S, Li S, Guillevic M, Mitrevski B, Harth CM, Miller BR, Reimann S, Yao B, Steele LP, Wyss SA, Lunder CR, Arduini J, McCulloch A, Wu S, Rhee TS, Wang RHJ, Salameh PK, Hermansen O, Hill M, Langenfelds RL, Ivy D, O'Doherty S, Krummel PB, Maione M, Etheridge DM, Zhou L, Fraser PJ, Prinn RG, Weiss RF, Simmonds PG.  2018.  Atmospheric histories and emissions of chlorofluorocarbons CFC-13 (CClF3), ΣCFC-114 (C2Cl2F4), and CFC-115 (C2ClF5). Atmospheric Chemistry and Physics. 18:979-1002.: Copernicus Publications AbstractWebsite
Liang, Q, Chipperfield MP, Fleming EL, Abraham LN, Braesicke P, Burkholder JB, Daniel JS, Dhomse S, Fraser PJ, Hardiman SC, Jackman CH, Kinnison DE, Krummel PB, Montzka SA, Morgenstern O, McCulloch A, Mühle J, Newman PA, Orkin VL, Pitari G, Prinn RG, Rigby M, Rozanov E, Stenke A, Tummon F, Velders GJM, Visioni D, Weiss RF.  2017.  Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CH3CCl3 Alternatives. Journal of Geophysical Research: Atmospheres. 122:11914-11933. AbstractWebsite

An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CH3CCl3) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom-up emission inventories is the primary obstacle in choosing a MCF alternative. We illustrate that global emissions of long-lived trace gases can be inferred from their observed mixing ratio differences between the Northern Hemisphere (NH) and Southern Hemisphere (SH), given realistic estimates of their NH-SH exchange time, the emission partitioning between the two hemispheres, and the NH versus SH OH abundance ratio. Using the observed long-term trend and emissions derived from the measured hemispheric gradient, the combination of HFC-32 (CH2F2), HFC-134a (CH2FCF3, HFC-152a (CH3CHF2), and HCFC-22 (CHClF2), instead of a single gas, will be useful as a MCF alternative to infer global and hemispheric OH abundance and trace gas lifetimes. The primary assumption on which this multispecies approach relies is that the OH lifetimes can be estimated by scaling the thermal reaction rates of a reference gas at 272 K on global and hemispheric scales. Thus, the derived hemispheric and global OH estimates are forced to reconcile the observed trends and gradient for all four compounds simultaneously. However, currently, observations of these gases from the surface networks do not provide more accurate OH abundance estimate than that from MCF.

Dlugokencky, EJ, Hall BD, Montzka SA, Dutton G, Mühle J, Elkins JW.  2017.  [Global Climate, Atmospheric composition] Long-lived greenhouse gases [in State of the Climate in 2016]. Bulletin of the American Meteorological Society. 98( Blunden J, Arndt DS, Eds.).:S43-S46. Abstract
Simmonds, PG, Rigby M, McCulloch A, O'Doherty S, Young D, Mühle J, Krummel PB, Steele P, Fraser PJ, Manning AJ, Weiss RF, Salameh PK, Harth CM, Wang RHJ, Prinn RG.  2017.  Changing trends and emissions of hydrochlorofluorocarbons (HCFCs) and their hydrofluorocarbon (HFCs) replacements. Atmospheric Chemistry and Physics. 17:4641-4655.: Copernicus Publications AbstractWebsite
Rigby, M, Montzka SA, Prinn RG, White JWC, Young D, O’Doherty S, Lunt MF, Ganesan AL, Manning AJ, Simmonds PG, Salameh PK, Harth CM, Mühle J, Weiss RF, Fraser PJ, Steele PL, Krummel PB, McCulloch A, Park S.  2017.  Role of atmospheric oxidation in recent methane growth. Proceedings of the National Academy of Sciences. AbstractWebsite

The growth in global methane (CH4) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH4 sink, in the recent CH4 growth. We also examine the influence of systematic uncertainties in OH concentrations on CH4 emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH3CCl3), which is lost primarily through reaction with OH, to estimate OH levels as well as CH3CC3 emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64–70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH4 emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH4 emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric 13CH4/12CH4 ratio and the recent growth in C2H6. Our approach indicates that significant OH-related uncertainties in the CH4 budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH4 emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered.