Project Scientist

Research Interests

  • AGAGE (Advanced Global Atmospheric Gases Experiment) http://agage.eas.gatech.edu/
  • Global Warming, Climate Change, Greenhouse Gases (GHGs)
  • Stratospheric Ozone Depletion, Ozone Depleting Substances (ODSs)
  • Global and regional emissions, loss processes, and lifetimes of ODSs and GHGs
  • Top-down (measurement based) verification of bottom-up emission estimates
  • Top-down (measurement based) verification of compliance with the Montreal Protocol on Substances that Deplete the Ozone Layer and the Paris Agreement
  • Halogenated trace gases
  • Perfluorinated Compounds (PFCs) and their emissions from global aluminium, rare-earth, and semi-conductor industries
  • Trace gas measurement techniques (GC-FID/ECD, GC/MSD, GC/TOF-MS, PTR-TOF-MS, CRDS)
  • Atmospheric chemistry
  • Wildfire emissions
  • Long-range transport of pollutants

Degrees

  • Diploma in Chemistry, University of Wuppertal
  • Doctor of Natural Sciences, Max Planck Institute for Chemistry, Mainz and Johannes Gutenberg University Mainz

Recent Publications

Simmonds, PG, Rigby M, McCulloch A, O'Doherty S, Young D, Mühle J, Krummel PB, Steele P, Fraser PJ, Manning AJ, Weiss RF, Salameh PK, Harth CM, Wang RHJ, Prinn RG.  2017.  Changing trends and emissions of hydrochlorofluorocarbons (HCFCs) and their hydrofluorocarbon (HFCs) replacements. Atmospheric Chemistry and Physics. 17:4641-4655.: Copernicus Publications AbstractWebsite
n/a
Rigby, M, Montzka SA, Prinn RG, White JWC, Young D, O’Doherty S, Lunt MF, Ganesan AL, Manning AJ, Simmonds PG, Salameh PK, Harth CM, Mühle J, Weiss RF, Fraser PJ, Steele PL, Krummel PB, McCulloch A, Park S.  2017.  Role of atmospheric oxidation in recent methane growth. Proceedings of the National Academy of Sciences. AbstractWebsite

The growth in global methane (CH4) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH4 sink, in the recent CH4 growth. We also examine the influence of systematic uncertainties in OH concentrations on CH4 emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH3CCl3), which is lost primarily through reaction with OH, to estimate OH levels as well as CH3CC3 emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64–70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH4 emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH4 emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric 13CH4/12CH4 ratio and the recent growth in C2H6. Our approach indicates that significant OH-related uncertainties in the CH4 budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH4 emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered.

Zhang, G, Yao B, Vollmer MK, Montzka SA, Mühle J, Weiss RF, O'Doherty S, Li Y, Fang S, Reimann S.  2017.  Ambient mixing ratios of atmospheric halogenated compounds at five background stations in China. Atmospheric Environment. 160:55-69. AbstractWebsite

Abstract High precision measurements of three chlorofluorocarbons (CFCs), three hydrochlorofluorocarbons (HCFCs), six hydrofluorocarbons (HFCs), three perfluorocarbons (PFCs), and sulfur hexafluoride (SF6) were made at five Chinese background stations from January 2011 to December 2012. Their station means in the background air were 239.5 ± 0.69 parts-per-trillion dry-air mole fraction mixing ratios (ppt) for CFC-11, 536.5 ± 1.49 ppt for CFC-12, 74.66 ± 0.09 ppt for CFC-113, 232.1 ± 4.77 ppt for HCFC-22, 23.78 ± 0.29 ppt for HCFC-141b, 22.92 ± 0.42 ppt for HCFC-142b, 11.75 ± 0.43 ppt for HFC-125, 71.32 ± 1.35 ppt for HFC-134a, 13.62 ± 0.43 ppt for HFC-143a, 9.10 ± 1.26 ppt for HFC-152a, 25.45 ± 0.1 ppt for HFC-23, 7.28 ± 0.48 ppt for HFC-32, 4.32 ± 0.03 ppt for PFC-116, 0.63 ± 0.04 ppt for PFC-218, 1.36 ± 0.01 ppt for PFC-318, and 7.67 ± 0.03 ppt for SF6, respectively, which were comparable with those measured at the two Northern Hemisphere (NH) AGAGE stations: Mace Head, Ireland (MHD) and Trinidad Head, California, USA (THD). Compared with our results for earlier years from in-situ measurement at SDZ, background-air mixing ratios of CFCs are now declining, while those for HCFCs, HFCs, PFCs, and SF6 are still increasing. The ratios of the number of sampling events in which measured mixing ratios were elevated above background (pollution events) relative to the total sample frequency (POL/SUM) for CFCs, HCFCs, and HFCs were found to be station dependent, generally LAN > SDZ > LFS > XGL > WLG. The enhancement (△, polluted mixing ratios minus background mixing ratios) generally show distinct patterns, with HCFCs (40.7–175.4 ppt) > HFCs (15.8–66.3 ppt)> CFCs (15.8–33.8 ppt)> PFCs (0.1–0.9 ppt) at five stations, especially for HCFC-22 ranging from 36.9 ppt to 138.2 ppt. Combining with the molecular weights, our findings imply biggest emissions of HCFCs in the regions around these Chinese sites compared to HFCs and CFCs, while the smallest of PFCs, consistent with CFCs being phased out and replaced with HCFCs in China. In addition, relative emission strengths (emission was expressed by mole fractions) of these halocarbons in China were inferred as HCFC-22 > HCFC-141b > HFC-134a > HCFC-142b for the Yangtze River Delta (YRD) and as HCFC-22 > HCFC-142b > HCFC-141b ≈ HFC-134a in the North China Plain (NCP).

Liang, Q, Chipperfield MP, Fleming EL, Abraham LN, Braesicke P, Burkholder JB, Daniel JS, Dhomse S, Fraser PJ, Hardiman SC, Jackman CH, Kinnison DE, Krummel PB, Montzka SA, Morgenstern O, McCulloch A, Mühle J, Newman PA, Orkin VL, Pitari G, Prinn RG, Rigby M, Rozanov E, Stenke A, Tummon F, Velders GJM, Visioni D, Weiss RF.  2017.  Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CH3CCl3 Alternatives. Journal of Geophysical Research: Atmospheres. 122:11914-11933. AbstractWebsite

An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CH3CCl3) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom-up emission inventories is the primary obstacle in choosing a MCF alternative. We illustrate that global emissions of long-lived trace gases can be inferred from their observed mixing ratio differences between the Northern Hemisphere (NH) and Southern Hemisphere (SH), given realistic estimates of their NH-SH exchange time, the emission partitioning between the two hemispheres, and the NH versus SH OH abundance ratio. Using the observed long-term trend and emissions derived from the measured hemispheric gradient, the combination of HFC-32 (CH2F2), HFC-134a (CH2FCF3, HFC-152a (CH3CHF2), and HCFC-22 (CHClF2), instead of a single gas, will be useful as a MCF alternative to infer global and hemispheric OH abundance and trace gas lifetimes. The primary assumption on which this multispecies approach relies is that the OH lifetimes can be estimated by scaling the thermal reaction rates of a reference gas at 272 K on global and hemispheric scales. Thus, the derived hemispheric and global OH estimates are forced to reconcile the observed trends and gradient for all four compounds simultaneously. However, currently, observations of these gases from the surface networks do not provide more accurate OH abundance estimate than that from MCF.

Simmonds, PG, Rigby M, Manning AJ, Lunt MF, O'Doherty S, McCulloch A, Fraser PJ, Henne S, Vollmer MK, Mühle J, Weiss RF, Salameh PK, Young D, Reimann S, Wenger A, Arnold T, Harth CM, Krummel PB, Steele LP, Dunse BL, Miller BR, Lunder CR, Hermansen O, Schmidbauer N, Saito T, Yokouchi Y, Park S, Li S, Yao B, Zhou LX, Arduini J, Maione M, Wang RHJ, Ivy D, Prinn RG.  2016.  Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a, CH3CHF2) from in situ and air archive observations. Atmospheric Chemistry and Physics. 16:365-382.: Copernicus Publications AbstractWebsite
n/a
Chirkov, M, Stiller GP, Laeng A, Kellmann S, von Clarmann T, Boone CD, Elkins JW, Engel A, Glatthor N, Grabowski U, Harth CM, Kiefer M, Kolonjari F, Krummel PB, Linden A, Lunder CR, Miller BR, Montzka SA, Mühle J, O'Doherty S, Orphal J, Prinn RG, Toon G, Vollmer MK, Walker KA, Weiss RF, Wiegele A, Young D.  2016.  Global HCFC-22 measurements with MIPAS: retrieval, validation, global distribution and its evolution over 2005–2012. Atmospheric Chemistry and Physics. 16:3345-3368.: Copernicus Publications AbstractWebsite
n/a