Project Scientist

Research Interests:

  • AGAGE (Advanced Global Atmospheric Gases Experiment) http://agage.eas.gatech.edu/
  • Greenhouse gases
  • Halogenated trace gases
  • Ozone depleting compounds
  • Trace gas measurements (especially GC-FID/ECD/MSD)
  • Global warming
  • Top-down (measurement based) verification of bottom-up emission estimates
  • Atmospheric chemistry
  • Wildfire emissions
  • Long-range transport of pollutants

Degrees:

  • Diploma in Chemistry, University of Wuppertal
  • Doctor of Natural Sciences, Max Planck Institute for Chemistry, Mainz and Johannes Gutenberg University Mainz

Recent Publications

Simmonds, PG, Rigby M, Manning AJ, Lunt MF, O'Doherty S, McCulloch A, Fraser PJ, Henne S, Vollmer MK, Mühle J, Weiss RF, Salameh PK, Young D, Reimann S, Wenger A, Arnold T, Harth CM, Krummel PB, Steele LP, Dunse BL, Miller BR, Lunder CR, Hermansen O, Schmidbauer N, Saito T, Yokouchi Y, Park S, Li S, Yao B, Zhou LX, Arduini J, Maione M, Wang RHJ, Ivy D, Prinn RG.  2016.  Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a, CH3CHF2) from in situ and air archive observations. Atmospheric Chemistry and Physics. 16:365-382.: Copernicus Publications   10.5194/acp-16-365-2016   AbstractWebsite
n/a
Chirkov, M, Stiller GP, Laeng A, Kellmann S, von Clarmann T, Boone CD, Elkins JW, Engel A, Glatthor N, Grabowski U, Harth CM, Kiefer M, Kolonjari F, Krummel PB, Linden A, Lunder CR, Miller BR, Montzka SA, Mühle J, O'Doherty S, Orphal J, Prinn RG, Toon G, Vollmer MK, Walker KA, Weiss RF, Wiegele A, Young D.  2016.  Global HCFC-22 measurements with MIPAS: retrieval, validation, global distribution and its evolution over 2005–2012. Atmospheric Chemistry and Physics. 16:3345-3368.: Copernicus Publications   10.5194/acp-16-3345-2016   AbstractWebsite
n/a
Vollmer, MK, Muhle J, Trudinger CM, Rigby M, Montzka SA, Harth CM, Miller BR, Henne S, Krummel PB, Hall BD, Young D, Kim J, Arduini J, Wenger A, Yao B, Reimann S, O'Doherty S, Maione M, Etheridge DM, Li SL, Verdonik DP, Park S, Dutton G, Steele LP, Lunder CR, Rhee TS, Hermansen O, Schmidbauer N, Wang RHJ, Hill M, Salameh PK, Langenfelds RL, Zhou LX, Blunier T, Schwander J, Elkins JW, Butler JH, Simmonds PG, Weiss RF, Prinn RG, Fraser PJ.  2016.  Atmospheric histories and global emissions of halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402 (CBrF2CBrF2). Journal of Geophysical Research-Atmospheres. 121:3663-3686.   10.1002/2015jd024488   AbstractWebsite

We report ground-based atmospheric measurements and emission estimates for the halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402 (CBrF2CBrF2) from the AGAGE (Advanced Global Atmospheric Gases Experiment) and the National Oceanic and Atmospheric Administration global networks. We also include results from archived air samples in canisters and from polar firn in both hemispheres, thereby deriving an atmospheric record of nearly nine decades (1930s to present). All three halons were absent from the atmosphere until approximate to 1970, when their atmospheric burdens started to increase rapidly. In recent years H-1211 and H-2402 mole fractions have been declining, but H-1301 has continued to grow. High-frequency observations show continuing emissions of H-1211 and H-1301 near most AGAGE sites. For H-2402 the only emissions detected were derived from the region surrounding the Sea of Japan/East Sea. Based on our observations, we derive global emissions using two different inversion approaches. Emissions for H-1211 declined from a peak of 11ktyr(-1) (late 1990s) to 3.9ktyr(-1) at the end of our record (mean of 2013-2015), for H-1301 from 5.4ktyr(-1) (late 1980s) to 1.6ktyr(-1), and for H-2402 from 1.8ktyr(-1) (late 1980s) to 0.38ktyr(-1). Yearly summed halon emissions have decreased substantially; nevertheless, since 2000 they have accounted for approximate to 30% of the emissions of all major anthropogenic ozone depletion substances, when weighted by ozone depletion potentials.

Trudinger, CM, Fraser PJ, Etheridge DM, Sturges WT, Vollmer MK, Rigby M, Martinerie P, Mühle J, Worton DR, Krummel PB, Steele LP, Miller BR, Laube J, Mani FS, Rayner PJ, Harth CM, Witrant E, Blunier T, Schwander J, O'Doherty S, Battle M.  2016.  Atmospheric abundance and global emissions of perfluorocarbons CF4, C2F6 and C3F8 since 1800 inferred from ice core, firn, air archive and in situ measurements. Atmospheric Chemistry and Physics. 16:11733-11754.: Copernicus Publications   10.5194/acp-16-11733-2016   AbstractWebsite
n/a
Chipperfield, MP, Liang Q, Rigby M, Hossaini R, Montzka SA, Dhomse S, Feng WH, Prinn RG, Weiss RF, Harth CM, Salameh PK, Muhle J, O'Doherty S, Young D, Simmonds PG, Krummel PB, Fraser PJ, Steele LP, Happell JD, Rhew RC, Butler J, Yvon-Lewis SA, Hall B, Nance D, Moore F, Miller BR, Elkins J, Harrison JJ, Boone CD, Atlas EL, Mahieu E.  2016.  Model sensitivity studies of the decrease in atmospheric carbon tetrachloride. Atmospheric Chemistry and Physics. 16:15741-15754.   10.5194/acp-16-15741-2016   AbstractWebsite

Carbon tetrachloride (CCl4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74% of total), but a reported 10% uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9% of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17% of total) has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years). With an assumed CCl4 emission rate of 39 Gg year(-1), the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year(-1). Further progress in constraining the CCl4 budget is partly limited by systematic biases between observational datasets. For example, surface observations from the National Oceanic and Atmospheric Administration (NOAA) network are larger than from the Advanced Global Atmospheric Gases Experiment (AGAGE) network but have shown a steeper decreasing trend over the past 2 decades. These differences imply a difference in emissions which is significant relative to uncertainties in the magnitudes of the CCl4 sinks.

Deeds, DA, Kulongoski JT, Mühle J, Weiss RF.  2015.  Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: Observations in groundwaters along the San Andreas Fault. Earth and Planetary Science Letters. 412:163-172.   http://dx.doi.org/10.1016/j.epsl.2014.12.016   AbstractWebsite

Abstract Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge ( C r e ; ∼30 fmol kg−1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1–9 times C r e ), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10–980 times C r e ) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20–100 km) suggests that the SAFS potentially emits ( 0.3 – 1 ) × 10 − 1 kg CF4 yr−1 to the Earth's surface. For comparison, the chemical weathering of ∼ 7.5 × 10 4 km 2 of granitic rock in California is estimated to release ( 0.019 – 3.2 ) × 10 − 1 kg CF4 yr−1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial–interglacial transitions.