Publications

Export 108 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Amsellam, E, Moynier F, Pringle EA, Bouvier A, Chen H, Day JMD.  2017.  Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes. Earth and Planetary Science Letters. 469:75-83.   10.1016/j.epsl.2017.04.022   Abstract

Understanding the composition of raw materials that formed the Earth is a crucial step towards
understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most
abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary
composition. However, in order to use Ca isotopes as a tracer of Earth’s accretion history, it is first
necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation.
Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic
composition enables understanding of how and in what conditions the Solar System formed. Here we
present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that
most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca
isotopes (δ44/40Ca= +0.1 to +0.93) compared with bulk silicate Earth (δ44/40Ca= +1.05 ± 0.04,
Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope
composition (δ44/40Ca = +0.91 to +1.06). Chondrules from Allende are enriched in the heavier
isotopes of Ca compared to the bulk and the matrix of the meteorite (δ44/40Ca = +1.00 to +1.21).
This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous
chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and
chondrules is permissive of recent dynamical models of planetary formation that propose a chondrulerich
accretion model for planetary embryos.

Amsellam, E, Moynier F, Day JMD, Moriera M, Puchtel IS, Teng F-Z.  2018.  The stable strontium isotopic composition of ocean island basalts, mid-ocean ridge basalts, and komatiites. Chemical Geology. 483:595-602.   https://doi.org/10.1016/j.chemgeo.2018.03.030   Abstract

The radiogenic 87Rb-87Sr system has been widely applied to the study of geological and planetary processes. In contrast, the stable Sr isotopic composition of the bulk silicate Earth (BSE) and the effects of igneous differentiation on stable Sr isotopes are not well-established. Here we report the stable Sr isotope (88Sr/86Sr, reported as δ88/86Sr, in parts per mil relative to NIST SRM 987) compositions for ocean islands basalts (OIB), mid-ocean ridge basalts (MORB) and komatiites from a variety of locations. Stable Sr isotopes display limited fractionation in a OIB sample suite from the Kilauea Iki lava lake suggesting that igneous processes have limited effect on stable Sr isotope fractionation (±0.12‰ over 20% MgO variation; 2sd). In addition, OIB (δ88/86Sr = 0.16–0.46‰; average 0.28 ± 0.17‰), MORB (δ88/86Sr = 0.27–0.34‰; average 0.31 ± 0.05‰) and komatiites (δ88/86Sr = 0.20–0.97‰; average 0.41 ± 0.16‰) from global localities exhibit broadly similar Sr stable isotopic compositions. Heavy stable Sr isotope compositions (δ88/86Sr > 0.5‰) in some Barberton Greenstone belt komatiites may reflect Archean seawater alteration or metamorphic processes and preferential removal of the lighter isotopes of Sr. To first order, the similarity among OIBs from three different ocean basins suggests homogeneity of stable Sr isotopes in the mantle. Earth's mantle stable Sr isotopic composition is established from the data on OIB, MORB and komatiites to be δ88/86Sr = 0.30 ± 0.02‰ (2sd). The BSE δ88/86Sr value is identical, within uncertainties, to the composition of carbonaceous chondrites (δ88/86Sr = 0.29 ± 0.06‰; 2sd) measured in this study.

B
Barry, PH, Hilton DR, Day JMD, Pernet-Fisher JF, Howarth GH, Magna T, Agashev AM, Pokhilenko NP, Pokhilenko LH, Taylor LA.  2015.  Helium isotopic evidence for modification of the cratonic lithosphere during the Permo-Triassic Siberian flood basalt event. Lithos. 216-217:73-80.   10.1016/j.lithos.2014.12.001   Abstract

Major flood basalt emplacement events can dramatically alter the composition of the sub-continental lithospheric mantle (SCLM). The Siberian craton experienced one of the largest flood basalt events preserved in the geologic record — eruption of the Permo-Triassic Siberian flood basalts (SFB) at ~250 Myr in response to upwelling of a deep-rooted mantle plume beneath the Siberian SCLM. Here,we present helium isotope (3He/4He) and concentration data for petrologically-distinct suites of peridotitic xenoliths recovered from two temporally-separated kimberlites:
the 360 Ma Udachnaya and 160 Ma Obnazhennaya pipes, which erupted through the Siberian SCLM and bracket the eruption of the SFB. Measured 3He/4He ratios span a range from 0.1 to 9.8 RA (where RA = air 3He/4He) and fall into two distinct groups: 1) predominantly radiogenic pre-plume Udachnaya samples (mean clinopyroxene 3He/4He = 0.41 ± 0.30 RA (1σ); n = 7 excluding 1 outlier), and 2) ‘mantle-like’ post plume Obnazhennaya samples (mean clinopyroxene 3He/4He=4.20±0.90 RA (1σ); n=5 excluding 1 outlier). Olivine separates from both kimberlite pipes tend to have higher 3He/4He than clinopyroxenes (or garnet). Helium contents in Udachnaya samples ([He] = 0.13–1.35 μcm3STP/g; n = 6) overlap with those of Obnazhennaya
([He]=0.05–1.58 μcm3STP/g; n = 10), but extend to significantly higher values in some instances ([He]=49–349 μcm3STP/g; n = 4). Uranium and thorium contents are also reported for the crushed material from which He was extracted in order to evaluate the potential for He migration from the mineral matrix to fluid inclusions. The wide range in He content, together with consistently radiogenic He-isotope values in Udachnaya peridotites suggests that crustal-derived fluids have incongruently metasomatized segments of the Siberian SCLM, whereas high 3He/4He values in Obnazhennaya peridotites show that this section of the SCLM has been overprinted by Permo-Triassic (plume-derived) basaltic fluids. Indeed, the stark contrast between pre- and post-plume 3He/4He ratios in peridotite xenoliths highlights the potentially powerful utility of He-isotopes for differentiating between various types of metasomatism (i.e., crustal versus basaltic fluids).

Bottke, WF, Walker RJ, Day JMD, Nesvorny D, Elkins-Tanton L.  2010.  Stochastic Late Accretion to Earth, the Moon, and Mars. Science. 330:1527-1530.   10.1126/science.1196874   AbstractWebsite

Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that >= 0.5% Earth masses of broadly chondritic planetesimals reach Earth's mantle and that similar to 10 and similar to 1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth's obliquity by similar to 10 degrees, whereas those for the Moon, at similar to 250 to 300 kilometers, may have delivered water to its mantle.

Brandon, AD, Puchtel IS, Walker RJ, Day JMD, Irving AJ, Taylor LA.  2012.  Evolution of the martian mantle inferred from the Re-187-Os-187 isotope and highly siderophile element abundance systematics of shergottite meteorites. Geochimica Et Cosmochimica Acta. 76:206-235.   10.1016/j.gca.2011.09.047   AbstractWebsite

Shergottite meteorites are a suite of mafic to ultramafic igneous rocks whose parental magmas probably derived from the martian mantle. In this study, a suite of 23 shergottites, spanning their known range in bulk compositions, Rb-Sr, Sm-Nd, and Lu-Hf isotopes, were measured for Re-187-Os-187 isotopic systematics and highly siderophile element abundances (HSE: including Os, Ir, Ru, Pt, Pd, Re). The chief objective was to gain new insight on the chemical evolution of the martian mantle by unraveling the long-term HSE budget of its derivative melts. Possible effects upon HSEs related to crustal contamination, as well as terrestrial and/or martian surface alteration are also examined. Some of the shergottites are hot arid-desert finds. Their respective acetic acid leachates and residues show that both Re and Os display open-system behavior during sample residence at or near the martian and/or terrestrial surfaces. In some meteorites, the alteration effects can be circumvented by analysis of the leached residues. For those shergottites believed to record robust Re-Os isotopic systematics, calculated initial Os-187/Os-188 are well correlated with the initial Nd-143/Nd-144. Shergottites from mantle sources with long-term melt-depleted characteristics (initial epsilon Nd-143 of + 36 to + 40) have chondritic initial gamma Os-187 ranging from -0.5 to + 2.5. Shergottites with intermediate initial epsilon Nd-143 of + 8 to + 17 have a range in initial gamma Os-187 of -0.6 to + 2.3, which overlaps the range for depleted shergottites. Shergottites from long-term enriched sources, with initial epsilon Nd-143 of similar to-7, are characterized by suprachondritic gamma Os-187 values of + 5 to + 15. The initial gamma Os-187 variations for the shergottites do not show a correlation with indices of magmatic differentiation, such as MgO, or any systematic differences between hot arid-desert finds, Antarctic finds, or observed falls. The strong correlation between the initial epsilon Nd-143 and gamma Os-187 in shergottites from approximately + 40 and 0 to -7 and + 15, respectively, is assessed in models for mixing depleted mantle-derived melts with ancient crust (modeled to be similar to evolved shergottite in composition), and with assimilation-fractional crystallization. These models show that the correlation is unlikely to result from participation of martian crust. More likely, this correlation relates to contributions from depleted and enriched reservoirs formed in a martian magma ocean at ca. 4.5 Ga. These models indicate that the shergottite endmember sources were generated by mixing between residual melts and cumulates that formed at variable stages during solidification of a magma ocean. The expanded database for the HSE abundances in shergottites suggests that their martian mantle sources have similar HSE abundances to the terrestrial mantle, consistent with prior studies. The relatively high HSE abundances in both planetary mantles likely cannot be accounted for by high pressure-temperature metal-silicate partitioning at the bases of magma oceans, as has been suggested for Earth. If the HSE were instead supplied by late accretion, this event must have occurred prior to the crystallization of the last martian magma ocean. (C) 2011 Elsevier Ltd. All rights reserved.

C
Cabral, RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, Antonelli MA, Farquhar J, Day JMD, Hauri EH.  2013.  Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature. 496:490-+.   10.1038/nature12020   AbstractWebsite

Basaltic lavas erupted at some oceanic intraplate hotspot volcanoes are thought to sample ancient subducted crustal materials(1,2). However, the residence time of these subducted materials in the mantle is uncertain and model-dependent(3), and compelling evidence for their return to the surface in regions of mantle upwelling beneath hotspots is lacking. Here we report anomalous sulphur isotope signatures indicating mass-independent fractionation (MIF) in olivine-hosted sulphides from 20-million-year-old ocean island basalts from Mangaia, Cook Islands (Polynesia), which have been suggested to sample recycled oceanic crust(3,4). Terrestrial MIF sulphur isotope signatures (in which the amount of fractionation does not scale in proportion with the difference in the masses of the isotopes) were generated exclusively through atmospheric photochemical reactions until about 2.45 billion years ago(5-7). Therefore, the discovery of MIF sulphur in these young plume lavas suggests that sulphur-probably derived from hydrothermally altered oceanic crust-was subducted into the mantle before 2.45 billion years ago and recycled into the mantle source of Mangaia lavas. These new data provide evidence for ancient materials, with negative Delta S-33 values, in the mantle source for Mangaia lavas. Our data also complement evidence for recycling of the sulphur content of ancient sedimentary materials to the subcontinental lithospheric mantle that has been identified in diamond-hosted sulphide inclusions(8,9). This Archaean age for recycled oceanic crust also provides key constraints on the length of time that subducted crustal material can survive in the mantle, and on the timescales of mantle convection from subduction to upwelling beneath hotspots.

Cabral, RA, Jackson MG, Koga KT, Rose-Koga EF, Hauri EH, Whitehouse MJ, Price AA, Day JMD, Shimizu N, Kelley KA.  2014.  Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle: A new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochemistry, Geophysics, Geosystems. 15(11):4445-4467.   10.1002/2014GC005473   Abstract

Mangaia hosts the most radiogenic Pb-isotopic compositions observed in ocean island basalts and represents the HIMU (high m5238U/204Pb) mantle end-member, thought to result from recycled oceanic crust. Complete geochemical characterization of the HIMU mantle end-member has been inhibited due to a lack of deep submarine glass samples from HIMU localities. We homogenized olivine-hosted melt inclusions separated from Mangaia lavas and the resulting glassy inclusions made possible the first volatile abundances to be obtained from the HIMU mantle end-member. We also report major and trace element abundances and Pb-isotopic ratios on the inclusions, which have HIMU isotopic fingerprints. We evaluate the samples for processes that could modify the volatile and trace element abundances postmantle melting, including diffusive Fe and H2O loss, degassing, and assimilation. H2O/Ce ratios vary from 119 to 245 in the most pristine Mangaia inclusions; excluding an inclusion that shows evidence for assimilation, the primary magmatic H2O/Ce ratios vary up to 200, and are consistent with significant dehydration of oceanic crust during subduction and long-term storage in the mantle. CO2 concentrations range up to 2346 ppm CO2 in the inclusions. Relatively high CO2 in the inclusions, combined with previous observations of carbonate blebs in other Mangaia melt inclusions, highlight the importance of CO2 for the generation of the HIMU mantle. F/Nd ratios in the inclusions (3069; 2r standard deviation) are higher than the canonical ratio observed in oceanic lavas, and Cl/K ratios (0.07960.028) fall in the range of pristine mantle (0.02–0.08).

Chen, H, Meshik AP, Pravdivtseva OV, Day JMD, Wang K.  2019.  Potassium isotope fractionation during the high-temperature evaporation determined from the Trinity nuclear test. Chemical Geology.   https://doi.org/10.1016/j.chemgeo.2019.04.02   Abstract

Trinitite materials are the post-detonation glassy residues formed from melting and evaporation of arkosic sands during the first nuclear detonation at the Trinity test site, New Mexico on 16th July, 1945. These trinitites provide useful materials for studying elemental and isotopic behaviors associated with high temperature melting and evaporation that is otherwise difficult to be achieved under laboratory conditions. Using a high-precision method, we measured the potassium (K) isotopic compositions of six bulk trinitite samples taken at different distances from the epicenter of detonation of the Gadget (ground zero). 15 leachates and etchates of trinitite samples were also analyzed to examine the distribution of K within the samples. All trinitites but IF_m (taken within 10 m from the epicenter) show no resolvable K loss and span a narrow range in K isotopic compositions (δ41K: -0.42 ± 0.05‰ to -0.48 ± 0.05‰), revealing no discernible K isotopic fractionation from the Bulk Silicate Earth (BSE) value (-0.48 ± 0.03‰). Residues and etchates of the trinitite material are identical in composition to the bulk samples implying that K isotopes were homogeneous with the arkosic sand at the Trinity test site prior to the nuclear detonation. The most strongly melted green trinitite IF_m, is the only trinitite that shows loss of K (~7%) coupled with resolvable heavier K isotope composition (0.2‰ higher in δ41K than the BSE value). This coupled K loss and isotopic fractionation corresponds to a 55 fractionation factor(avapor-melt) between 0.995 and 0.998 during the Trinity nuclear detonation. These results confirm that K isotopic fractionation occurs through evaporation processes at high temperatures. We also show that, compared with Zn isotopes measured in the same samples, the isotopes of K were significantly less fractionated during evaporation, indicating that K is less volatile during processes such as magma ocean degassing, volcanic outgassing, and impact volatile loss with the relative order of sensitivity being Cu > Zn > K. Our findings support the concept that the heavy K isotopic composition observed in lunar mare basalts reflects the primary signature imprinted by the Moon-forming giant impact event.

Clay, PL, Burgess R, Busemann H, Ruzie-Hamilton L, Joachim B, Day JMD, Ballentine CJ.  2017.  Halogens in chondritic meteorites and terrestrial accretion. Nature. 551:614-618.   10.1038/nature24625   Abstract

Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15–37 times lower, respectively, than previously reported and usually accepted estimates1. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass2,3,4,5, cannot solely account for present-day terrestrial halogen inventories6,7. It is estimated that 80–90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs7,8 and have not undergone the extreme early loss observed in atmosphere-forming elements9. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases10, the efficient extraction of halogen-rich fluids6 from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion5,11,12,13,14.

Combs, LM, Udry A, Howarth GH, Righter M, Lapen TJ, Gross J, Ross DK, Rahib RR, Day JMD.  2019.  Petrology of the enriched poikilitic shergottite Northwest Africa 10169: Insight into the martian interior. Geochimica et Cosmochimica Acta.   https://doi.org/10.1016/j.gca.2019.07.001   Abstract

The martian meteorite Northwest Africa (NWA) 10169 is classified as a member of the geochemically enriched poikilitic shergottites, based on mineral composition, Lu-Hf and Sm-Nd isotope systematics, and rare earth element (REE) concentrations. Similar to other enriched and intermediate poikilitic shergottites, NWA 10169 is a cumulate rock that exhibits a bimodal texture characterized by large pyroxene oikocrysts (poikilitic texture) surrounded by olivine-rich interstitial material (non-poikilitic texture). Olivine chadacrysts and pyroxene oikocrysts have higher Mg#s (molar Mg/Mg + Fe) than those in the interstitial areas, suggesting that the poikilitic texture represents early-stage crystallization and accumulation, as opposed to late-stage non-poikilitic (i.e., interstitial material) crystallization. Calculated oxygen fugacity values are more reduced (FMQ −2.3 ± 0.2) within the poikilitic regions, and more oxidized (FMQ −1.1 ± 0.1) within the interstitial areas, likely representing auto-oxidation and degassing during magma crystallization. Calculated parental melt compositions using olivine-hosted melt inclusions display a dichotomy between K-poor and K-rich melts, thus possibly indicating mixing of parental melt with K-rich melt. The 176Lu-176Hf crystallization age for NWA 10169 is 167 ± 31 Ma, consistent with the ages reported for other enriched shergottites. Based on the isochron initial 176Hf/177Hf value, the modeled source 176Lu/177Hf composition for NWA 10169 is 0.02748 ± 0.00037, identical within uncertainty to the source compositions of the enriched shergottites Shergotty, Zagami, LAR 06319, NWA 4468, and Roberts Massif (RBT) 04262, suggesting a shared, long-lived geochemical source, and distinct from the source of other enriched shergottites Los Angeles, NWA 856, and NWA 7320. This study reveals that at least two sources are responsible for the enriched shergottites, and that the martian mantle is more heterogeneous than previously thought. Additionally, the enriched shergottites, which share a source with NWA 10169, have consistent crystallization ages and magmatic histories, indicating that a common magmatic system on Mars is likely responsible for the formation of this group.

D
Day, JMD, Pearson DG, Nowell GM.  2003.  High precision rhenium and platinum isotope dilution analyses by plasma ionisation multi-collector mass spectrometry. Plasma Source Mass Spectrometry: applications and emerging technologies. ( Holland G, Tanner SD, Eds.)., London: RSC Publishing   10.1039/9781847551689  
Day, JMD, Hilton DR.  2011.  Origin of (3)He/(4)He ratios in HIMU-type basalts constrained from Canary Island lavas. Earth and Planetary Science Letters. 305:226-234.   10.1016/j.epsl.2011.03.006   AbstractWebsite

New helium isotope and abundance measurements are reported for olivine and clinopyroxene phenocrysts from HIMU-type (high-mu=elevated (238)U/(204)Pb) lavas and xenoliths spanning the stratigraphies of El Hierro and La Palma, Canary Islands. Some pyroxene phenocrysts have suffered post-eruptive modification, either by less than 1% assimilation of crustal-derived He, or by closed-system ageing of He. Olivine phenocrysts record mantle source (3)He/(4)He compositions, with the average (3)He/(4)He for La Palma olivine (7.6 +/- 0.8R(A), where R(A) is the atmospheric (3)He/(4)He ratio of 1.38 x 10(-6)) being within uncertainty of those for El Hierro (7.7 +/- 0.3R(A)), and the canonical mid-ocean ridge basalt range (MORB: 8 +/- 1R(A)). The new helium isotope data for El Hierro and La Palma show no distinct correlations with whole-rock (87)Sr/(86)Sr, (143)Nd/(144)Nd, (187)Os/(188)Os, or Pb isotopes, but (3)He/(4)He ratios for La Palma lavas correlate with (18)O/(16)O measured for the same phenocryst populations. Despite limited (3)He/(4)He variations for El Hierro and La Palma, their He-O isotope systematics are consistent with derivation from mantle sources containing distinct recycled oceanic basaltic crust (El Hierro) and gabbroic lithosphere (La Palma) components that have mixed with depleted mantle, and a high-(3)He/(4)He component (>9.7R(A)) in the case of La Palma. The new data are consistent with models involving generation of compositionally and lithologically (e.g., pyroxenite, eclogite, peridotite) heterogeneous mantle sources containing recycled oceanic crust and lithosphere entrained within upwelling high-(3)He/(4)He mantle that has been severely diluted by interaction with depleted mantle. We propose that the noble gas systematics of HIMU-type lavas and ocean island basalts (OIB) in general, are most simply interpreted as being controlled by the most gas-rich reservoir involved in mixing to generate their mantle sources. In this scenario, HIMU and enriched mantle (EM) sources are dominated by depleted mantle, or high-(3)He/(4)He mantle, because recycled crust and lithosphere have low He concentrations. Consequently, high-(3)He/(4)He OIB would predominantly reflect derivation from a less depleted mantle source with sub-equal to higher He contents than depleted mantle. The available coupled He-O isotope systematics measured for OIB lavas are consistent with this hypothesis. (C) 2011 Elsevier B.V. All rights reserved.

Day, JMD.  2015.  Planet formation processes revealed by meteorites. Geology Today. 31(1):12-20.   10.1111/gto.12082   Abstract

The history of the solar system is locked within the planets, asteroids and other objects that orbit the Sun. While remote observations of these celestial bodies are essential for understanding planetary processes, much of the geological and geochemical information regarding solar system heritage comes directly from the study of rocks and other materials originating from them. The diversity of materials available for study from planetary bodies largely comes from meteorites; fragments of rock that fall through Earth’s atmosphere after impact-extraction from their parent planet or asteroid. These extra-terrestrial objects are fundamental scientific materials, providing information on past conditions within planets, and on their surfaces, and revealing the timing of key events that affected a planet’s evolution. Meteorites can be sub-divided into four main groups: (1) chondrites, which are unmelted and variably metamorphosed ‘cosmic sediments’ composed of particles that made up the early solar nebula; (2) achondrites, which represent predominantly silicate materials from asteroids and planets that have partially to fully melted, from a broadly chondritic initial composition; (3) iron meteorites, which represent Fe-Ni samples from the cores of asteroids and planetesimals; and (4) stony-iron meteorites such as pallasites and mesosiderites, which are mixtures of metal and dominantly basaltic materials. Meteorite studies are rapidly expanding our understanding of how the solar system formed and when and how key events such as planetary accretion and differentiation occurred. Together with a burgeoning collection of classified meteorites, these scientific advances herald an unprecedented period of further scientific challenges and discoveries, an exciting prospect for understanding our origins.

Day, JMD, Ash RD, Liu Y, Bellucci JJ, Rumble D, McDonough WF, Walker RJ, Taylor LA.  2009.  Early formation of evolved asteroidal crust. Nature. 457:179-182.   10.1038/nature07651   AbstractWebsite

Mechanisms for the formation of crust on planetary bodies remain poorly understood(1). It is generally accepted that Earth's andesitic continental crust is the product of plate tectonics(1,2), whereas the Moon acquired its feldspar- rich crust by way of plagioclase flotation in a magma ocean(3,4). Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large- scale differentiation processes(5). Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak ( GRA) 06128 and GRA 06129. These meteorites are feldspar- rich, with andesite bulk compositions. Their age of 4.5+/-0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide- rich nature of the meteorites are most consistent with an origin as partial melts from a volatile- rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early- formed materials in the Solar System.

Day, JMD, O'Driscoll B.  2019.  Ancient high Pt/Os crustal contaminants can explain radiogenic 186Os in intraplate magmas. Earth and Planetary Science Letters. 519:101-108.   https://doi.org/10.1016/j.epsl.2019.04.039   Abstract

The origin of variations in 186Os/188Os ratios amongst mantle-derived basaltic and komatiitic lavas remains controversial, with opposing models arguing for deep core-mantle versus shallow mantle sources. Crustal contamination has generally not been favoured due to the low Os contents of such sources, meaning that variations in 186Os/188Os would require involvement of extremely high proportions of crustal material. Here we re-examine crustal contamination as an effective means for generating significant 186Os/188Os variations in Earth materials. Using chromitites and peridotites from the Stillwater, Muskox and Rum layered intrusions, we show that radiogenic 186Os/188Os ratios are correlated with 187Os/188Os ratios and can only be explained by shallow-level mixing processes and crustal contamination. The samples have 186Os ([{(186Os/188Ossample[t]/186Os/188OsPM(t)) -1} × 1000], where the modern primitive mantle [PM] 186Os/188Os is 0.1198388) values ranging between 0.04 to 0.15 for the ~2.7 Ga Stillwater Igneous Complex, -0.05 to 0.17 for the ~1.27 Ga Muskox Intrusion, and 0.02 to 0.13 for the ~0.06 Ga Rum Layered Suite. The highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) contents of the chromitites and peridotites can be modelled through high sulfide-melt partitioning (typically >8000) and emphasise the role of S-saturation and HSE scavenging. Considering the high sulfide-melt partitioning and accounting for high silicate melt to sulfide melt ratios (R-factor), it is possible to explain the variations in 186Os-187Os in layered intrusions using calculated Os isotope crustal evolution growth models. These calculations indicate that <4% of ancient high Pt/Os crustal contributions can explain the composition of the chromitites and peridotites that were examined. Our observations are consistent with published models for chromitite genesis that invoke either crustal melt-primitive melt mixing, or cumulate assimilation. A crustal origin for radiogenic 186Os is a possible cause for 186Os/188Os ratio variations observed in some komatiites. It is more difficult to explain radiogenic 186Os/188Os measured in Hawaiian lavas by crustal contamination processes. Instead, ancient high Pt/Os oceanic crust, shallow mantle sources such as metasomatic sulfide, or metal-rich large low-shear wave velocity provinces at the core-mantle boundary, all remain valid explanations.

Day, JMD, Hilton DR, Pearson DG, Macpherson CG, Kjarsgaard BA, Janney PE.  2005.  Absence of a high time-integrated He-3/(U+Th) source in the mantle beneath continents. Geology. 33:733-736.   10.1130/g21625.1   AbstractWebsite

Volcanic rocks from ocean island and continental flood basalt provinces can exhibit He-3/He-4 ratios greatly in excess of those of mid-oceanic-ridge basalts (MORB). High He-3/He-4 ratios must indicate derivation from a mantle source with high time-integrated He-3/(U+Th) relative to depleted MORB-source mantle. The location of the high He-3/He-4 mantle reservoir is a poorly resolved but important issue because of the constraints it places upon the structure and convective style of Earth's mantle. It has been proposed that the high He-3/He-4 reservoir resides in the upper mantle, rather than the lower mantle, because Earth should be volatile poor and highly differentiated, with incompatible elements (such as He) concentrated in the upper mantle and crust. This hypothesis can be tested using continental intraplate alkaline volcanics (CIAV) that are generated at or near the boundary between the conducting lithospheric and convecting asthenospheric mantle. Olivine and clinopyroxene phenocrysts from Cretaceous to Miocene CIAV from Canada, South Africa, and Uganda have He-3/He-4 ratios more radiogenic than MORB, strongly arguing against a widespread high He-3/He-4 source in the continental lithosphere or the underlying convecting upper mantle. Combined with a global data set of CIAV and continental lithosphere mantle xenoliths, these results provide no evidence for high He-3/He-4 in any samples known to originate from this environment. Therefore, volcanic rocks with He-3/He-4 greater than MORB He-3/He-4 are likely to sample a mantle source with high time-integrated He-3/(U+Th) that cannot exist within or below the continents. This reservoir is also unlikely to exist within the upper mantle as defined by the He-3/He-4 distribution in MORB.

Day, JMD, Moynier F.  2014.  Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Phil. Trans. R. Soc. A. 20130259   10.1098/rsta.2013.0259   Abstract

The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high mu (238U/204Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss.

Day, JMD, Macpherson CG, Lowry D, Pearson DG.  2012.  Oxygen isotope heterogeneity of the mantle beneath the Canary Islands: a discussion of the paper of Gurenko et al. Contributions to Mineralogy and Petrology. 164:177-183.   10.1007/s00410-012-0755-3   AbstractWebsite

Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) report laser-assisted fluorination (LF) and secondary ionization mass spectrometry (SIMS) O-18/O-16 datasets for olivine grains from the Canary Islands of Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro. As with prior studies of oxygen isotopes in Canary Island lavas (e.g. Thirlwall et al. Chem Geol 135:233-262, 1997; Day et al. Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010), these authors find variations in delta O-18(ol) (similar to 4.6-6.0 aEuro degrees) beyond that measured for mantle peridotite olivine (Mattey et al. Earth Planet Sci Lett 128:231-241, 1994) and interpret this variation to reflect contributions from pyroxenite-peridotite mantle sources. Furthermore, Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) speculate that delta O-18(ol) values for La Palma olivine grains measured by LF (Day et al. Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010) may be biased to low values due to the presence of altered silicate, possibly serpentine. The range in delta O-18(ol) values for Canary Island lavas are of importance for constraining their origin. Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) took a subset (39 SIMS analyses from 13 grains from a single El Hierro lava; EH4) of a more extensive dataset (321 SIMS analyses from 110 grains from 16 Canary Island lavas) to suggest that delta O-18(ol) is weakly correlated (R (2) = 0.291) with the parameter used by Gurenko et al. (Earth Planet Sci Lett 277:514-524, 2009) to describe the estimated weight fraction of pyroxenite-derived melt (Xpx). With this relationship, end-member delta O-18 values for HIMU-peridotite (delta O-18 = 5.3 +/- A 0.3 aEuro degrees) and depleted pyroxenite (delta O-18 = 5.9 +/- A 0.3 aEuro degrees) were defined. Although the model proposed by Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) implicates similar pyroxenite-peridotite mantle sources to those proposed by Day et al. (Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010) and Day and Hilton (Earth Planet Sci Lett 305:226-234, 2011), there are significant differences in the predicted delta O-18 values of end member components in the two models. In particular, Day et al. (Geochim Cosmochim Acta 74:6565-6589, 2010) proposed a mantle source for La Palma lavas with low-delta O-18 (< 5 aEuro degrees), rather than higher-delta O-18 (c.f. the HIMU-peridotite composition of Gurenko et al. in Contrib Mineral Petrol 162:349-363, 2011). Here we question the approach of using weakly correlated variations in delta O-18(ol) and the Xpx parameter to define mantle source oxygen isotope compositions, and provide examples of why this approach appears flawed. We also provide reasons why the LF datasets previously published for Canary Island lavas remain robust and discuss why LF and SIMS data may provide complementary information on oxygen isotope variations in ocean island basalts (OIB), despite unresolved small-scale uncertainties associated with both techniques.

Day, JMD, Maria-Benavides J, McCubbin FM, Zeigler RA.  2018.  The potential for metal contamination during Apollo lunar sample curation. Meteoritics and Planetary Science. 53:1283-1291.   https://doi.org/10.1111/maps.13074   Abstract

Curation and preparation of samples for chemical analysis can occasionally lead to significant contamination. This issue is of concern in the study of lunar samples, especially those from the Apollo sample collection, where available masses are finite. Here we present compositional data for stainless steels that have commonly been used in the processing of Apollo lunar samples at NASA Johnson Space Center, including a chisel and a vessel typically used to transfer Apollo samples to principal investigators. The Type 304 stainless steels are Cr-rich, with high concentrations of Mn (4000–18,000 ug g1), Cu (1000–22,900 ug g1), Mo (1030–1120 ug g1), and W (72-193 ug g1). They have elevated highly siderophile element (HSE) concentrations (up to 92 ng g1 Os), 187Os/188Os ranging from 0.1310 to 0.1336, and negligible lithophile element abundances. We find that, while metal contamination is possible, significant (≫0.01% by mass) addition of stainless steel is required to strongly affect the composition of the HSE, W, Mo, Cr, or Cu for most Apollo lunar samples. Nonetheless, careful appraisal on a case-by-case basis should take place to ensure contamination introduced through sample processing during curation is at acceptably low levels. A survey of lunar mare basalts and crustal rocks indicates that metal contamination plays a negligible role in the compositional variability of the HSE and W compositions preserved in these samples. Further work to constrain contamination for other properties of Apollo samples is required (e.g., organics, microbes, water, noble gases, and magnetics), but the effect of metal contamination can be well-constrained for the Apollo lunar collection.

Day, JMD, Taylor LA, Floss C, Patchen AD, Schnare DW, Pearson DG.  2006.  Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica. Geochimica Et Cosmochimica Acta. 70:1581-1600.   10.1016/j.gca.2005.11.015   AbstractWebsite

New data is presented for five evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica, LAP 02205, LAP 02224, LAP 02226, LAP 02436, and LAP 03632. These basalts have nearly identical mineralogies, textures, and geochemical compositions, and are therefore considered to be paired. The LaPaz basalts contain olivine (Fo(64-2)) and pyroxene (Fs(32)Wo(8)En(60) to Fs(84-86)Wo(15)En(2-0)) crystals that record extreme chemical fractionation to Fe-enrichment at the rims, and evidence for silicate liquid immiscibility and incompatible element enrichment in the mesostasis. The basalts also contain FeNi metals with unusually high Co and Ni contents, similar to some Apollo 12 basalts, and a single-phase network of melt veins and fusion crusts. The fusion crust has similar chemical characteristics to the whole rock for the LaPaz basalts, whereas the melt veins represent localized melting of the basalt and have an endogenous origin. The crystallization conditions and evolved nature of the LaPaz basalts are consistent with fractionation of olivine and chromite from a parental liquid similar in composition to some olivine-phyric Apollo 12 and Apollo 15 basalts or lunar low-Ti pyroclastic glasses. However, the young reported ages for the LaPaz mare basalts (similar to 2.9 Ga) and their relative incompatible element enrichment compared to Apollo mare basalts and pyroclastic glasses indicate they cannot be directly related. Instead, the LaPaz mare basalts may represent fractionated melts from a magmatic system fed by similar degrees of partial melting of a mantle source similar to that of the low-Ti Apollo mare basalts or pyroclastic glasses, but which possessed greater incompatible element enrichment. Despite textural differences, the LaPaz basalts and mare basalt meteorite NWA 032 have similar ages and compositions and may originate from the same magmatic system on the Moon. (c) 2005 Elsevier Inc. All rights reserved.

Day, JMD, Walker RJ, Warren JM.  2017.  Os-186-Os-187 and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochimica et Cosmochimica Acta. 200:232-254.   10.1016/j.gca.2016.12.013   Abstract

Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history.

Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ±21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ±20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ±25), and 186Os/188Os of 0.1198388 ±29, both of which are within uncertainty of previous primitive mantle estimates. The 186Os/188Os composition of the PM is less radiogenic than for some plume-related lavas, with the latter requiring sources with high long-term time-integrated Pt/Os. Estimates of primitive mantle HSE concentrations using abyssal peridotites define chondritic Pd/Ir, which differs from previous supra-chondritic estimates for Pd/Ir based on peridotites from a range of tectonic settings. By contrast, estimates of PM yield non-chondritic Ru/Ir. The cause of enhanced Ru in the mantle remains enigmatic, but may reflect variable partitioning behaviour of Ru at high pressure and temperature.

Day, JMD, Tait KT, Udry A, Moynier F, Liu Y, Neal CR.  2018.  Martian magmatism from plume metasomatized mantle. Nature Communications. 9:4799.   10.1038/s41467-018-07191-0   Abstract

Direct analysis of the composition of Mars is possible through delivery of meteorites to Earth. Martian meteorites include ∼165 to 2400 Ma shergottites, originating from depleted to enriched mantle sources, and ∼1340 Ma nakhlites and chassignites, formed by low degree partial melting of a depleted mantle source. To date, no unified model has been proposed to explain the petrogenesis of these distinct rock types, despite their importance for understanding the formation and evolution of Mars. Here we report a coherent geochemical dataset for shergottites, nakhlites and chassignites revealing fundamental differences in sources. Shergottites have lower Nb/Y at a given Zr/Y than nakhlites or chassignites, a relationship nearly identical to terrestrial Hawaiian main shield and rejuvenated volcanism. Nakhlite and chassignite compositions are consistent with melting of hydrated and metasomatized depleted mantle lithosphere, whereas shergottite melts originate from deep mantle sources. Generation of martian magmas can be explained by temporally distinct melting episodes within and below dynamically supported and variably metasomatized lithosphere, by long-lived, static mantle plumes.

Day, JMD, Corder CA, Rumble D, Assayag N, Cartigny P, Taylor LA.  2015.  Differentiation processes in FeO-rich asteroids revealed by the achondrite Lewis Cliff 88763. Meteoritics & Planetary Science. 50:1750-1766.   10.1111/maps.12509   AbstractWebsite

Olivine-dominated (70-80 modal %) achondrite meteorite Lewis Cliff (LEW) 88763 originated from metamorphism and limited partial melting of a FeO-rich parent body. The meteorite experienced some alteration on Earth, evident from subchondritic Re/Os, and redistribution of rhenium within the sample. LEW 88763 is texturally similar to winonaites, has a Delta O-17 value of -1.19 +/- 0.10 parts per thousand, and low bulk-rock Mg/(Mg+Fe) (0.39), similar to the FeO-rich cumulate achondrite Northwest Africa (NWA) 6693. The similar bulk-rock major-, minor-, and trace-element abundances of LEW 88763, relative to some carbonaceous chondrites, including ratios of Pd/Os, Pt/Os, Ir/Os, and Os-187/Os-188 (0.1262), implies a FeO-and volatile-rich precursor composition. Lack of fractionation of the rare earth elements, but a factor of approximately two lower highly siderophile element abundances in LEW 88763, compared with chondrites, implies limited loss of Fe-Ni-S melts during metamorphism and anatexis. These results support the generation of high Fe/Mg, sulfide, and/or metal-rich partial melts from FeO-rich parent bodies during partial melting. In detail, however, LEW 88763 cannot be a parent composition to any other meteorite sample, due to highly limited silicate melt loss (0 to << 5%). As such, LEW 88763 represents the least-modified FeO-rich achondrite source composition recognized to date and is distinct from all other meteorites. LEW 88763 should be reclassified as an anomalous achondrite that experienced limited Fe, Ni-FeS melt loss. Lewis Cliff 88763, combined with a growing collection of FeO-rich meteorites, such as brachinites, brachinite-like achondrites, the Graves Nunataks (GRA) 06128/9 meteorites, NWA 6693, and Tafassasset, has important implications for understanding the initiation of planetary differentiation. Specifically, regardless of precursor compositions, partial melting and differentiation processes appear to be similar on asteroidal bodies spanning a range of initial oxidation states and volatile contents.

Day, JMD, Pearson DG, Macpherson CG, Lowry D, Carracedo JC.  2009.  Pyroxenite-rich mantle formed by recycled oceanic lithosphere: Oxygen-osmium isotope evidence from Canary Island lavas. Geology. 37:555-558.   10.1130/g25613a.1   AbstractWebsite

Plate tectonic processes result in recycling of crust and lithosphere into Earth's mantle. Evidence for long-term preservation of recycled reservoirs in the mantle comes from the enriched isotopic character of oceanic island basalt (OIB) lavas. Although recycled constituents can explain much of the geochemical variation in the OIB-source mantle, it has been shown that direct melting of these components would lead to magmas with evolved compositions, unlike OIB. Instead, it has been argued that either metasomatic pyroxene-rich peridotite that has inherited the trace element and isotopic character of subducted materials, or high-temperature intramantle metasomatism of lithosphere can explain OIB compositions. To test these models, we present new oxygen and osmium isotope data for lavas from the Canary Islands of El Hierro and La Palma. These islands have distinct (18)O/(16)O and (187)Os/(188)Os compositions that can be explained through melting of pyroxenite-enriched peridotite mantle containing <10% recycled oceanic lithosphere. We also assess O-Os isotope systematics of lavas from Hawai'i and the Azores and show that they also conform to addition of distinct recycled oceanic components, including lithosphere and pelagic sediment. We conclude that enriched isotopic signatures of some OIBs are consistent with pyroxenite-rich mantle sources metasomatized by recycled components.

Day, JMD, Moynier F, Shearer CK.  2017.  Late-stage magmatic outgassing from a volatile-depleted Moon. Proceedings of the National Academy of Sciences. 114(35):9547-9551.   10.1073/pnas.1708236114   AbstractWebsite

The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.