Publications

Export 112 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Amsellam, E, Moynier F, Day JMD, Moriera M, Puchtel IS, Teng F-Z.  2018.  The stable strontium isotopic composition of ocean island basalts, mid-ocean ridge basalts, and komatiites. Chemical Geology. 483:595-602.   https://doi.org/10.1016/j.chemgeo.2018.03.030   Abstract

The radiogenic 87Rb-87Sr system has been widely applied to the study of geological and planetary processes. In contrast, the stable Sr isotopic composition of the bulk silicate Earth (BSE) and the effects of igneous differentiation on stable Sr isotopes are not well-established. Here we report the stable Sr isotope (88Sr/86Sr, reported as δ88/86Sr, in parts per mil relative to NIST SRM 987) compositions for ocean islands basalts (OIB), mid-ocean ridge basalts (MORB) and komatiites from a variety of locations. Stable Sr isotopes display limited fractionation in a OIB sample suite from the Kilauea Iki lava lake suggesting that igneous processes have limited effect on stable Sr isotope fractionation (±0.12‰ over 20% MgO variation; 2sd). In addition, OIB (δ88/86Sr = 0.16–0.46‰; average 0.28 ± 0.17‰), MORB (δ88/86Sr = 0.27–0.34‰; average 0.31 ± 0.05‰) and komatiites (δ88/86Sr = 0.20–0.97‰; average 0.41 ± 0.16‰) from global localities exhibit broadly similar Sr stable isotopic compositions. Heavy stable Sr isotope compositions (δ88/86Sr > 0.5‰) in some Barberton Greenstone belt komatiites may reflect Archean seawater alteration or metamorphic processes and preferential removal of the lighter isotopes of Sr. To first order, the similarity among OIBs from three different ocean basins suggests homogeneity of stable Sr isotopes in the mantle. Earth's mantle stable Sr isotopic composition is established from the data on OIB, MORB and komatiites to be δ88/86Sr = 0.30 ± 0.02‰ (2sd). The BSE δ88/86Sr value is identical, within uncertainties, to the composition of carbonaceous chondrites (δ88/86Sr = 0.29 ± 0.06‰; 2sd) measured in this study.

Amsellam, E, Moynier F, Pringle EA, Bouvier A, Chen H, Day JMD.  2017.  Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes. Earth and Planetary Science Letters. 469:75-83.   10.1016/j.epsl.2017.04.022   Abstract

Understanding the composition of raw materials that formed the Earth is a crucial step towards
understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most
abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary
composition. However, in order to use Ca isotopes as a tracer of Earth’s accretion history, it is first
necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation.
Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic
composition enables understanding of how and in what conditions the Solar System formed. Here we
present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that
most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca
isotopes (δ44/40Ca= +0.1 to +0.93) compared with bulk silicate Earth (δ44/40Ca= +1.05 ± 0.04,
Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope
composition (δ44/40Ca = +0.91 to +1.06). Chondrules from Allende are enriched in the heavier
isotopes of Ca compared to the bulk and the matrix of the meteorite (δ44/40Ca = +1.00 to +1.21).
This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous
chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and
chondrules is permissive of recent dynamical models of planetary formation that propose a chondrulerich
accretion model for planetary embryos.

B
Barry, PH, Hilton DR, Day JMD, Pernet-Fisher JF, Howarth GH, Magna T, Agashev AM, Pokhilenko NP, Pokhilenko LH, Taylor LA.  2015.  Helium isotopic evidence for modification of the cratonic lithosphere during the Permo-Triassic Siberian flood basalt event. Lithos. 216-217:73-80.   10.1016/j.lithos.2014.12.001   Abstract

Major flood basalt emplacement events can dramatically alter the composition of the sub-continental lithospheric mantle (SCLM). The Siberian craton experienced one of the largest flood basalt events preserved in the geologic record — eruption of the Permo-Triassic Siberian flood basalts (SFB) at ~250 Myr in response to upwelling of a deep-rooted mantle plume beneath the Siberian SCLM. Here,we present helium isotope (3He/4He) and concentration data for petrologically-distinct suites of peridotitic xenoliths recovered from two temporally-separated kimberlites:
the 360 Ma Udachnaya and 160 Ma Obnazhennaya pipes, which erupted through the Siberian SCLM and bracket the eruption of the SFB. Measured 3He/4He ratios span a range from 0.1 to 9.8 RA (where RA = air 3He/4He) and fall into two distinct groups: 1) predominantly radiogenic pre-plume Udachnaya samples (mean clinopyroxene 3He/4He = 0.41 ± 0.30 RA (1σ); n = 7 excluding 1 outlier), and 2) ‘mantle-like’ post plume Obnazhennaya samples (mean clinopyroxene 3He/4He=4.20±0.90 RA (1σ); n=5 excluding 1 outlier). Olivine separates from both kimberlite pipes tend to have higher 3He/4He than clinopyroxenes (or garnet). Helium contents in Udachnaya samples ([He] = 0.13–1.35 μcm3STP/g; n = 6) overlap with those of Obnazhennaya
([He]=0.05–1.58 μcm3STP/g; n = 10), but extend to significantly higher values in some instances ([He]=49–349 μcm3STP/g; n = 4). Uranium and thorium contents are also reported for the crushed material from which He was extracted in order to evaluate the potential for He migration from the mineral matrix to fluid inclusions. The wide range in He content, together with consistently radiogenic He-isotope values in Udachnaya peridotites suggests that crustal-derived fluids have incongruently metasomatized segments of the Siberian SCLM, whereas high 3He/4He values in Obnazhennaya peridotites show that this section of the SCLM has been overprinted by Permo-Triassic (plume-derived) basaltic fluids. Indeed, the stark contrast between pre- and post-plume 3He/4He ratios in peridotite xenoliths highlights the potentially powerful utility of He-isotopes for differentiating between various types of metasomatism (i.e., crustal versus basaltic fluids).

Bottke, WF, Walker RJ, Day JMD, Nesvorny D, Elkins-Tanton L.  2010.  Stochastic Late Accretion to Earth, the Moon, and Mars. Science. 330:1527-1530.   10.1126/science.1196874   AbstractWebsite

Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that >= 0.5% Earth masses of broadly chondritic planetesimals reach Earth's mantle and that similar to 10 and similar to 1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth's obliquity by similar to 10 degrees, whereas those for the Moon, at similar to 250 to 300 kilometers, may have delivered water to its mantle.

Brandon, AD, Puchtel IS, Walker RJ, Day JMD, Irving AJ, Taylor LA.  2012.  Evolution of the martian mantle inferred from the Re-187-Os-187 isotope and highly siderophile element abundance systematics of shergottite meteorites. Geochimica Et Cosmochimica Acta. 76:206-235.   10.1016/j.gca.2011.09.047   AbstractWebsite

Shergottite meteorites are a suite of mafic to ultramafic igneous rocks whose parental magmas probably derived from the martian mantle. In this study, a suite of 23 shergottites, spanning their known range in bulk compositions, Rb-Sr, Sm-Nd, and Lu-Hf isotopes, were measured for Re-187-Os-187 isotopic systematics and highly siderophile element abundances (HSE: including Os, Ir, Ru, Pt, Pd, Re). The chief objective was to gain new insight on the chemical evolution of the martian mantle by unraveling the long-term HSE budget of its derivative melts. Possible effects upon HSEs related to crustal contamination, as well as terrestrial and/or martian surface alteration are also examined. Some of the shergottites are hot arid-desert finds. Their respective acetic acid leachates and residues show that both Re and Os display open-system behavior during sample residence at or near the martian and/or terrestrial surfaces. In some meteorites, the alteration effects can be circumvented by analysis of the leached residues. For those shergottites believed to record robust Re-Os isotopic systematics, calculated initial Os-187/Os-188 are well correlated with the initial Nd-143/Nd-144. Shergottites from mantle sources with long-term melt-depleted characteristics (initial epsilon Nd-143 of + 36 to + 40) have chondritic initial gamma Os-187 ranging from -0.5 to + 2.5. Shergottites with intermediate initial epsilon Nd-143 of + 8 to + 17 have a range in initial gamma Os-187 of -0.6 to + 2.3, which overlaps the range for depleted shergottites. Shergottites from long-term enriched sources, with initial epsilon Nd-143 of similar to-7, are characterized by suprachondritic gamma Os-187 values of + 5 to + 15. The initial gamma Os-187 variations for the shergottites do not show a correlation with indices of magmatic differentiation, such as MgO, or any systematic differences between hot arid-desert finds, Antarctic finds, or observed falls. The strong correlation between the initial epsilon Nd-143 and gamma Os-187 in shergottites from approximately + 40 and 0 to -7 and + 15, respectively, is assessed in models for mixing depleted mantle-derived melts with ancient crust (modeled to be similar to evolved shergottite in composition), and with assimilation-fractional crystallization. These models show that the correlation is unlikely to result from participation of martian crust. More likely, this correlation relates to contributions from depleted and enriched reservoirs formed in a martian magma ocean at ca. 4.5 Ga. These models indicate that the shergottite endmember sources were generated by mixing between residual melts and cumulates that formed at variable stages during solidification of a magma ocean. The expanded database for the HSE abundances in shergottites suggests that their martian mantle sources have similar HSE abundances to the terrestrial mantle, consistent with prior studies. The relatively high HSE abundances in both planetary mantles likely cannot be accounted for by high pressure-temperature metal-silicate partitioning at the bases of magma oceans, as has been suggested for Earth. If the HSE were instead supplied by late accretion, this event must have occurred prior to the crystallization of the last martian magma ocean. (C) 2011 Elsevier Ltd. All rights reserved.

C
Cabral, RA, Jackson MG, Koga KT, Rose-Koga EF, Hauri EH, Whitehouse MJ, Price AA, Day JMD, Shimizu N, Kelley KA.  2014.  Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle: A new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochemistry, Geophysics, Geosystems. 15(11):4445-4467.   10.1002/2014GC005473   Abstract

Mangaia hosts the most radiogenic Pb-isotopic compositions observed in ocean island basalts and represents the HIMU (high m5238U/204Pb) mantle end-member, thought to result from recycled oceanic crust. Complete geochemical characterization of the HIMU mantle end-member has been inhibited due to a lack of deep submarine glass samples from HIMU localities. We homogenized olivine-hosted melt inclusions separated from Mangaia lavas and the resulting glassy inclusions made possible the first volatile abundances to be obtained from the HIMU mantle end-member. We also report major and trace element abundances and Pb-isotopic ratios on the inclusions, which have HIMU isotopic fingerprints. We evaluate the samples for processes that could modify the volatile and trace element abundances postmantle melting, including diffusive Fe and H2O loss, degassing, and assimilation. H2O/Ce ratios vary from 119 to 245 in the most pristine Mangaia inclusions; excluding an inclusion that shows evidence for assimilation, the primary magmatic H2O/Ce ratios vary up to 200, and are consistent with significant dehydration of oceanic crust during subduction and long-term storage in the mantle. CO2 concentrations range up to 2346 ppm CO2 in the inclusions. Relatively high CO2 in the inclusions, combined with previous observations of carbonate blebs in other Mangaia melt inclusions, highlight the importance of CO2 for the generation of the HIMU mantle. F/Nd ratios in the inclusions (3069; 2r standard deviation) are higher than the canonical ratio observed in oceanic lavas, and Cl/K ratios (0.07960.028) fall in the range of pristine mantle (0.02–0.08).

Cabral, RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, Antonelli MA, Farquhar J, Day JMD, Hauri EH.  2013.  Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature. 496:490-+.   10.1038/nature12020   AbstractWebsite

Basaltic lavas erupted at some oceanic intraplate hotspot volcanoes are thought to sample ancient subducted crustal materials(1,2). However, the residence time of these subducted materials in the mantle is uncertain and model-dependent(3), and compelling evidence for their return to the surface in regions of mantle upwelling beneath hotspots is lacking. Here we report anomalous sulphur isotope signatures indicating mass-independent fractionation (MIF) in olivine-hosted sulphides from 20-million-year-old ocean island basalts from Mangaia, Cook Islands (Polynesia), which have been suggested to sample recycled oceanic crust(3,4). Terrestrial MIF sulphur isotope signatures (in which the amount of fractionation does not scale in proportion with the difference in the masses of the isotopes) were generated exclusively through atmospheric photochemical reactions until about 2.45 billion years ago(5-7). Therefore, the discovery of MIF sulphur in these young plume lavas suggests that sulphur-probably derived from hydrothermally altered oceanic crust-was subducted into the mantle before 2.45 billion years ago and recycled into the mantle source of Mangaia lavas. These new data provide evidence for ancient materials, with negative Delta S-33 values, in the mantle source for Mangaia lavas. Our data also complement evidence for recycling of the sulphur content of ancient sedimentary materials to the subcontinental lithospheric mantle that has been identified in diamond-hosted sulphide inclusions(8,9). This Archaean age for recycled oceanic crust also provides key constraints on the length of time that subducted crustal material can survive in the mantle, and on the timescales of mantle convection from subduction to upwelling beneath hotspots.

Chen, H, Meshik AP, Pravdivtseva OV, Day JMD, Wang K.  2019.  Potassium isotope fractionation during the high-temperature evaporation determined from the Trinity nuclear test. Chemical Geology. 522:84-92.   https://doi.org/10.1016/j.chemgeo.2019.04.02   Abstract

Trinitite materials are the post-detonation glassy residues formed from melting and evaporation of arkosic sands during the first nuclear detonation at the Trinity test site, New Mexico on 16th July, 1945. These trinitites provide useful materials for studying elemental and isotopic behaviors associated with high temperature melting and evaporation that is otherwise difficult to be achieved under laboratory conditions. Using a high-precision method, we measured the potassium (K) isotopic compositions of six bulk trinitite samples taken at different distances from the epicenter of detonation of the Gadget (ground zero). 15 leachates and etchates of trinitite samples were also analyzed to examine the distribution of K within the samples. All trinitites but IF_m (taken within 10 m from the epicenter) show no resolvable K loss and span a narrow range in K isotopic compositions (δ41K: -0.42 ± 0.05‰ to -0.48 ± 0.05‰), revealing no discernible K isotopic fractionation from the Bulk Silicate Earth (BSE) value (-0.48 ± 0.03‰). Residues and etchates of the trinitite material are identical in composition to the bulk samples implying that K isotopes were homogeneous with the arkosic sand at the Trinity test site prior to the nuclear detonation. The most strongly melted green trinitite IF_m, is the only trinitite that shows loss of K (~7%) coupled with resolvable heavier K isotope composition (0.2‰ higher in δ41K than the BSE value). This coupled K loss and isotopic fractionation corresponds to a 55 fractionation factor(avapor-melt) between 0.995 and 0.998 during the Trinity nuclear detonation. These results confirm that K isotopic fractionation occurs through evaporation processes at high temperatures. We also show that, compared with Zn isotopes measured in the same samples, the isotopes of K were significantly less fractionated during evaporation, indicating that K is less volatile during processes such as magma ocean degassing, volcanic outgassing, and impact volatile loss with the relative order of sensitivity being Cu > Zn > K. Our findings support the concept that the heavy K isotopic composition observed in lunar mare basalts reflects the primary signature imprinted by the Moon-forming giant impact event.

Clay, PL, Burgess R, Busemann H, Ruzie-Hamilton L, Joachim B, Day JMD, Ballentine CJ.  2017.  Halogens in chondritic meteorites and terrestrial accretion. Nature. 551:614-618.   10.1038/nature24625   Abstract

Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15–37 times lower, respectively, than previously reported and usually accepted estimates1. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass2,3,4,5, cannot solely account for present-day terrestrial halogen inventories6,7. It is estimated that 80–90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs7,8 and have not undergone the extreme early loss observed in atmosphere-forming elements9. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases10, the efficient extraction of halogen-rich fluids6 from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion5,11,12,13,14.

Combs, LM, Udry A, Howarth GH, Righter M, Lapen TJ, Gross J, Ross DK, Rahib RR, Day JMD.  2019.  Petrology of the enriched poikilitic shergottite Northwest Africa 10169: Insight into the martian interior. Geochimica et Cosmochimica Acta. 266:435-462.   https://doi.org/10.1016/j.gca.2019.07.001   Abstract

The martian meteorite Northwest Africa (NWA) 10169 is classified as a member of the geochemically enriched poikilitic shergottites, based on mineral composition, Lu-Hf and Sm-Nd isotope systematics, and rare earth element (REE) concentrations. Similar to other enriched and intermediate poikilitic shergottites, NWA 10169 is a cumulate rock that exhibits a bimodal texture characterized by large pyroxene oikocrysts (poikilitic texture) surrounded by olivine-rich interstitial material (non-poikilitic texture). Olivine chadacrysts and pyroxene oikocrysts have higher Mg#s (molar Mg/Mg + Fe) than those in the interstitial areas, suggesting that the poikilitic texture represents early-stage crystallization and accumulation, as opposed to late-stage non-poikilitic (i.e., interstitial material) crystallization. Calculated oxygen fugacity values are more reduced (FMQ −2.3 ± 0.2) within the poikilitic regions, and more oxidized (FMQ −1.1 ± 0.1) within the interstitial areas, likely representing auto-oxidation and degassing during magma crystallization. Calculated parental melt compositions using olivine-hosted melt inclusions display a dichotomy between K-poor and K-rich melts, thus possibly indicating mixing of parental melt with K-rich melt. The 176Lu-176Hf crystallization age for NWA 10169 is 167 ± 31 Ma, consistent with the ages reported for other enriched shergottites. Based on the isochron initial 176Hf/177Hf value, the modeled source 176Lu/177Hf composition for NWA 10169 is 0.02748 ± 0.00037, identical within uncertainty to the source compositions of the enriched shergottites Shergotty, Zagami, LAR 06319, NWA 4468, and Roberts Massif (RBT) 04262, suggesting a shared, long-lived geochemical source, and distinct from the source of other enriched shergottites Los Angeles, NWA 856, and NWA 7320. This study reveals that at least two sources are responsible for the enriched shergottites, and that the martian mantle is more heterogeneous than previously thought. Additionally, the enriched shergottites, which share a source with NWA 10169, have consistent crystallization ages and magmatic histories, indicating that a common magmatic system on Mars is likely responsible for the formation of this group.

D
Day, JMD, Macpherson CG, Lowry D, Pearson DG.  2012.  Oxygen isotope heterogeneity of the mantle beneath the Canary Islands: a discussion of the paper of Gurenko et al. Contributions to Mineralogy and Petrology. 164:177-183.   10.1007/s00410-012-0755-3   AbstractWebsite

Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) report laser-assisted fluorination (LF) and secondary ionization mass spectrometry (SIMS) O-18/O-16 datasets for olivine grains from the Canary Islands of Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro. As with prior studies of oxygen isotopes in Canary Island lavas (e.g. Thirlwall et al. Chem Geol 135:233-262, 1997; Day et al. Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010), these authors find variations in delta O-18(ol) (similar to 4.6-6.0 aEuro degrees) beyond that measured for mantle peridotite olivine (Mattey et al. Earth Planet Sci Lett 128:231-241, 1994) and interpret this variation to reflect contributions from pyroxenite-peridotite mantle sources. Furthermore, Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) speculate that delta O-18(ol) values for La Palma olivine grains measured by LF (Day et al. Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010) may be biased to low values due to the presence of altered silicate, possibly serpentine. The range in delta O-18(ol) values for Canary Island lavas are of importance for constraining their origin. Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) took a subset (39 SIMS analyses from 13 grains from a single El Hierro lava; EH4) of a more extensive dataset (321 SIMS analyses from 110 grains from 16 Canary Island lavas) to suggest that delta O-18(ol) is weakly correlated (R (2) = 0.291) with the parameter used by Gurenko et al. (Earth Planet Sci Lett 277:514-524, 2009) to describe the estimated weight fraction of pyroxenite-derived melt (Xpx). With this relationship, end-member delta O-18 values for HIMU-peridotite (delta O-18 = 5.3 +/- A 0.3 aEuro degrees) and depleted pyroxenite (delta O-18 = 5.9 +/- A 0.3 aEuro degrees) were defined. Although the model proposed by Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) implicates similar pyroxenite-peridotite mantle sources to those proposed by Day et al. (Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010) and Day and Hilton (Earth Planet Sci Lett 305:226-234, 2011), there are significant differences in the predicted delta O-18 values of end member components in the two models. In particular, Day et al. (Geochim Cosmochim Acta 74:6565-6589, 2010) proposed a mantle source for La Palma lavas with low-delta O-18 (< 5 aEuro degrees), rather than higher-delta O-18 (c.f. the HIMU-peridotite composition of Gurenko et al. in Contrib Mineral Petrol 162:349-363, 2011). Here we question the approach of using weakly correlated variations in delta O-18(ol) and the Xpx parameter to define mantle source oxygen isotope compositions, and provide examples of why this approach appears flawed. We also provide reasons why the LF datasets previously published for Canary Island lavas remain robust and discuss why LF and SIMS data may provide complementary information on oxygen isotope variations in ocean island basalts (OIB), despite unresolved small-scale uncertainties associated with both techniques.

Day, JMD, Maria-Benavides J, McCubbin FM, Zeigler RA.  2018.  The potential for metal contamination during Apollo lunar sample curation. Meteoritics and Planetary Science. 53:1283-1291.   https://doi.org/10.1111/maps.13074   Abstract

Curation and preparation of samples for chemical analysis can occasionally lead to significant contamination. This issue is of concern in the study of lunar samples, especially those from the Apollo sample collection, where available masses are finite. Here we present compositional data for stainless steels that have commonly been used in the processing of Apollo lunar samples at NASA Johnson Space Center, including a chisel and a vessel typically used to transfer Apollo samples to principal investigators. The Type 304 stainless steels are Cr-rich, with high concentrations of Mn (4000–18,000 ug g1), Cu (1000–22,900 ug g1), Mo (1030–1120 ug g1), and W (72-193 ug g1). They have elevated highly siderophile element (HSE) concentrations (up to 92 ng g1 Os), 187Os/188Os ranging from 0.1310 to 0.1336, and negligible lithophile element abundances. We find that, while metal contamination is possible, significant (≫0.01% by mass) addition of stainless steel is required to strongly affect the composition of the HSE, W, Mo, Cr, or Cu for most Apollo lunar samples. Nonetheless, careful appraisal on a case-by-case basis should take place to ensure contamination introduced through sample processing during curation is at acceptably low levels. A survey of lunar mare basalts and crustal rocks indicates that metal contamination plays a negligible role in the compositional variability of the HSE and W compositions preserved in these samples. Further work to constrain contamination for other properties of Apollo samples is required (e.g., organics, microbes, water, noble gases, and magnetics), but the effect of metal contamination can be well-constrained for the Apollo lunar collection.

Day, JMD, Taylor LA, Floss C, Patchen AD, Schnare DW, Pearson DG.  2006.  Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica. Geochimica Et Cosmochimica Acta. 70:1581-1600.   10.1016/j.gca.2005.11.015   AbstractWebsite

New data is presented for five evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica, LAP 02205, LAP 02224, LAP 02226, LAP 02436, and LAP 03632. These basalts have nearly identical mineralogies, textures, and geochemical compositions, and are therefore considered to be paired. The LaPaz basalts contain olivine (Fo(64-2)) and pyroxene (Fs(32)Wo(8)En(60) to Fs(84-86)Wo(15)En(2-0)) crystals that record extreme chemical fractionation to Fe-enrichment at the rims, and evidence for silicate liquid immiscibility and incompatible element enrichment in the mesostasis. The basalts also contain FeNi metals with unusually high Co and Ni contents, similar to some Apollo 12 basalts, and a single-phase network of melt veins and fusion crusts. The fusion crust has similar chemical characteristics to the whole rock for the LaPaz basalts, whereas the melt veins represent localized melting of the basalt and have an endogenous origin. The crystallization conditions and evolved nature of the LaPaz basalts are consistent with fractionation of olivine and chromite from a parental liquid similar in composition to some olivine-phyric Apollo 12 and Apollo 15 basalts or lunar low-Ti pyroclastic glasses. However, the young reported ages for the LaPaz mare basalts (similar to 2.9 Ga) and their relative incompatible element enrichment compared to Apollo mare basalts and pyroclastic glasses indicate they cannot be directly related. Instead, the LaPaz mare basalts may represent fractionated melts from a magmatic system fed by similar degrees of partial melting of a mantle source similar to that of the low-Ti Apollo mare basalts or pyroclastic glasses, but which possessed greater incompatible element enrichment. Despite textural differences, the LaPaz basalts and mare basalt meteorite NWA 032 have similar ages and compositions and may originate from the same magmatic system on the Moon. (c) 2005 Elsevier Inc. All rights reserved.

Day, JMD, Walker RJ, Warren JM.  2017.  Os-186-Os-187 and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochimica et Cosmochimica Acta. 200:232-254.   10.1016/j.gca.2016.12.013   Abstract

Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history.

Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ±21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ±20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ±25), and 186Os/188Os of 0.1198388 ±29, both of which are within uncertainty of previous primitive mantle estimates. The 186Os/188Os composition of the PM is less radiogenic than for some plume-related lavas, with the latter requiring sources with high long-term time-integrated Pt/Os. Estimates of primitive mantle HSE concentrations using abyssal peridotites define chondritic Pd/Ir, which differs from previous supra-chondritic estimates for Pd/Ir based on peridotites from a range of tectonic settings. By contrast, estimates of PM yield non-chondritic Ru/Ir. The cause of enhanced Ru in the mantle remains enigmatic, but may reflect variable partitioning behaviour of Ru at high pressure and temperature.

Day, JMD, Tait KT, Udry A, Moynier F, Liu Y, Neal CR.  2018.  Martian magmatism from plume metasomatized mantle. Nature Communications. 9:4799.   10.1038/s41467-018-07191-0   Abstract

Direct analysis of the composition of Mars is possible through delivery of meteorites to Earth. Martian meteorites include ∼165 to 2400 Ma shergottites, originating from depleted to enriched mantle sources, and ∼1340 Ma nakhlites and chassignites, formed by low degree partial melting of a depleted mantle source. To date, no unified model has been proposed to explain the petrogenesis of these distinct rock types, despite their importance for understanding the formation and evolution of Mars. Here we report a coherent geochemical dataset for shergottites, nakhlites and chassignites revealing fundamental differences in sources. Shergottites have lower Nb/Y at a given Zr/Y than nakhlites or chassignites, a relationship nearly identical to terrestrial Hawaiian main shield and rejuvenated volcanism. Nakhlite and chassignite compositions are consistent with melting of hydrated and metasomatized depleted mantle lithosphere, whereas shergottite melts originate from deep mantle sources. Generation of martian magmas can be explained by temporally distinct melting episodes within and below dynamically supported and variably metasomatized lithosphere, by long-lived, static mantle plumes.

Day, JMD, Corder CA, Rumble D, Assayag N, Cartigny P, Taylor LA.  2015.  Differentiation processes in FeO-rich asteroids revealed by the achondrite Lewis Cliff 88763. Meteoritics & Planetary Science. 50:1750-1766.   10.1111/maps.12509   AbstractWebsite

Olivine-dominated (70-80 modal %) achondrite meteorite Lewis Cliff (LEW) 88763 originated from metamorphism and limited partial melting of a FeO-rich parent body. The meteorite experienced some alteration on Earth, evident from subchondritic Re/Os, and redistribution of rhenium within the sample. LEW 88763 is texturally similar to winonaites, has a Delta O-17 value of -1.19 +/- 0.10 parts per thousand, and low bulk-rock Mg/(Mg+Fe) (0.39), similar to the FeO-rich cumulate achondrite Northwest Africa (NWA) 6693. The similar bulk-rock major-, minor-, and trace-element abundances of LEW 88763, relative to some carbonaceous chondrites, including ratios of Pd/Os, Pt/Os, Ir/Os, and Os-187/Os-188 (0.1262), implies a FeO-and volatile-rich precursor composition. Lack of fractionation of the rare earth elements, but a factor of approximately two lower highly siderophile element abundances in LEW 88763, compared with chondrites, implies limited loss of Fe-Ni-S melts during metamorphism and anatexis. These results support the generation of high Fe/Mg, sulfide, and/or metal-rich partial melts from FeO-rich parent bodies during partial melting. In detail, however, LEW 88763 cannot be a parent composition to any other meteorite sample, due to highly limited silicate melt loss (0 to << 5%). As such, LEW 88763 represents the least-modified FeO-rich achondrite source composition recognized to date and is distinct from all other meteorites. LEW 88763 should be reclassified as an anomalous achondrite that experienced limited Fe, Ni-FeS melt loss. Lewis Cliff 88763, combined with a growing collection of FeO-rich meteorites, such as brachinites, brachinite-like achondrites, the Graves Nunataks (GRA) 06128/9 meteorites, NWA 6693, and Tafassasset, has important implications for understanding the initiation of planetary differentiation. Specifically, regardless of precursor compositions, partial melting and differentiation processes appear to be similar on asteroidal bodies spanning a range of initial oxidation states and volatile contents.

Day, JMD, Pearson DG, Macpherson CG, Lowry D, Carracedo JC.  2009.  Pyroxenite-rich mantle formed by recycled oceanic lithosphere: Oxygen-osmium isotope evidence from Canary Island lavas. Geology. 37:555-558.   10.1130/g25613a.1   AbstractWebsite

Plate tectonic processes result in recycling of crust and lithosphere into Earth's mantle. Evidence for long-term preservation of recycled reservoirs in the mantle comes from the enriched isotopic character of oceanic island basalt (OIB) lavas. Although recycled constituents can explain much of the geochemical variation in the OIB-source mantle, it has been shown that direct melting of these components would lead to magmas with evolved compositions, unlike OIB. Instead, it has been argued that either metasomatic pyroxene-rich peridotite that has inherited the trace element and isotopic character of subducted materials, or high-temperature intramantle metasomatism of lithosphere can explain OIB compositions. To test these models, we present new oxygen and osmium isotope data for lavas from the Canary Islands of El Hierro and La Palma. These islands have distinct (18)O/(16)O and (187)Os/(188)Os compositions that can be explained through melting of pyroxenite-enriched peridotite mantle containing <10% recycled oceanic lithosphere. We also assess O-Os isotope systematics of lavas from Hawai'i and the Azores and show that they also conform to addition of distinct recycled oceanic components, including lithosphere and pelagic sediment. We conclude that enriched isotopic signatures of some OIBs are consistent with pyroxenite-rich mantle sources metasomatized by recycled components.

Day, JMD, Moynier F, Shearer CK.  2017.  Late-stage magmatic outgassing from a volatile-depleted Moon. Proceedings of the National Academy of Sciences. 114(35):9547-9551.   10.1073/pnas.1708236114   AbstractWebsite

The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.

Day, JMD, Pearson GD, Hulbert LJ.  2013.  Highly siderophile element behaviour during flood basalt genesis and evidence for melts from intrusive chromitite formation in the Mackenzie large igneous province. Lithos. 182-183:242-258.   http://dx.doi.org/10.1016/j.lithos.2013.10.011   Abstract

The 1.27 Ga Coppermine continental flood basalt (CFB) province in northern Canada represents the extrusive manifestation of the 2.7 Mkm2 Mackenzie large igneous province (LIP) that includes the Mackenzie dyke swarm and the Muskox layered intrusion. New Re–Os isotope and highly siderophile element (HSE: Re, Pd, Pt, Ru, Ir, Os) abundance data are reported together with whole-rock major- and trace-element abundances and Nd isotopes to examine the behaviour of the HSE during magmatic differentiation and to place constraints on the extent of crustal interaction with mantle-derived melts. Mineral chemistry and petrography are also reported for an unusual andesite glass flow (CM19; 4.9 wt.% MgO) found in close proximity to newly recognised picrites (> 20 wt.% MgO) in the lowermost stratigraphy of the Coppermine CFB. Compositions of mineral phases in CM19 are similar to the same phases found in Muskox Intrusion chromitites and the melt composition is equivalent to inclusions trapped within Muskox chromites. The apparently conflicting elevated HSE contents (e.g., 3.8 ppb Os) and mantle-like initial 187Os/188Os (γOs = + 2.2), versus stable isotope (δ18O = + 12‰) and lithophile element evidence (εNdi = − 12.8) for extensive crustal contamination, implicate an origin for CM19 as a magma mingling product formed within the Muskox Intrusion during chromitite genesis. Combined with Nd isotope data that places the feeder for lower Coppermine CFB picrites and basalts within the Muskox Intrusion, this result provides compelling evidence for direct processing of some CFB within upper-crustal magma chambers. The Coppermine CFB defines a 187Re–187Os isochron with an age of 1263 + 16/− 20 Ma and initial γOs = + 2.2 ± 0.8. The initial Os isotope composition for the Coppermine CFB is slightly higher than the near-primitive-mantle initial 187Os/188Os for the Muskox Intrusion (γOs = + 1.2 ± 0.3). This result is interpreted to reflect greater crustal contamination in extrusive CFB and the sensitivity of Os isotopes, compared with absolute HSE concentrations, for tracking crustal contributions.

Modelling of absolute and relative HSE abundances in global CFB reveals that HSE concentrations decrease with increasing fractionation for melts with < 8 ± 1 wt.% MgO, with picrites (> 13.5 wt.% MgO) from CFB (n = 98; 1.97 ± 1.77 ppb) having higher Os abundances than ocean island basalt (OIB) equivalents (n = 75; 0.95 ± 0.86 ppb). The differences between CFB and OIB picrite absolute Os abundances may result from higher degrees of partial melting to form CFB but may also reflect incorporation of trace sulphide in CFB picrites from magmas that reached S-saturation in upper-crustal magma chambers. Significant inter-element fractionation of (Re + Pt + Pd)/(Os + Ir + Ru) are generated during magmatic differentiation in response to strongly contrasting partitioning of these two groups of elements into sulphides and/or HSE-rich alloys. Furthermore, fractional crystallization has a greater role on absolute and relative HSE abundances than crustal contamination under conditions of CFB petrogenesis due to the dilution effect of continental crust, which has low total abundances of the HSE. Combined data for the basaltic and intrusive portions of the Mackenzie LIP indicate a mantle source broadly within the range of the primitive upper mantle. The majority of Archaean komatiites and Phanerozoic CFB also require mantle sources with primitive upper mantle to chondritic Re/Os evolution, with exceptions typically being from analyses of highly-fractionated MgO-poor basalts.

Day, JMD.  2016.  Extraordinary World. Nature. 537:310-311.   10.1038/537310a   Abstract

The isotopic compositions of objects that formed early in the evolution of the Solar System have been found to be similar to Earth's composition — overturning notions of our planet's chemical distinctiveness.

Day, JMD, Pearson DG, Hulbert LJ.  2008.  Rhenium-osmium isotope and platinum-group element constraints on the origin and evolution of the 1.27 Ga Muskox layered intrusion. Journal of Petrology. 49:1255-1295.   10.1093/petrology/egn024   AbstractWebsite

Platinum-group element (PGE: Os, Ir, Ru, Pt, Pd) and Re-Os isotope systematics determined for the entire preserved stratigraphy of the 1.27 Ga Muskox intrusion provide an exceptional view of magma chamber processes and mineralization in the main plutonic system of the Mackenzie large igneous province (LIP). We present new Re-Os isotope data for the intrusion, together with PGE and trace element abundances, and oxygen and Sm-Nd isotope data on samples that include local crustal materials, layered series peridotites, stratiform chromitites, marginal and roof zone rocks, and the Muskox Keel feeder dyke. Intrusive rocks span wide ranges in initial isotopic compositions (gamma(Os)i=+1.0 to +87.6; epsilon(Nd)i = -0.4 to -6.6; delta(18)O(Ol) =+ 5.5 to + 6.9 parts per thousand) and highly siderophile element abundances (HSE: PGE and Re; Re =0.02-105 ppb; Pt =0.23-115 ppb; O(s)= 0.02 to > 200 ppb). HSE and fluid-immobile trace element abundance variations are consistent with relative compatibilities expected for cumulate rocks. The most radiogenic Os and unradiogenic Nd isotope compositions occur in the Muskox marginal and roof zones. Negative gamma(Os)i values in these rocks and their non-isochronous relations result from mobilization of Re in the intrusion through post-magmatic hydrothermal processes. The most significant process causing Os and Nd isotope variations in the layered series of the intrusion is crustal contamination of mantle-derived magma batches feeding individual cyclic units. This process may be directly responsible for formation of chromitite horizons within the intrusion. Accounting for crustal assimilation, the Muskox intrusion parental magma has gamma(Os)i = +1.2 +/- 0.3, epsilon(Nd)i > -1.0 +/- 0.4, delta(18)O similar to +5.5 parts per thousand and HSE abundances similar to those expected from >= 15% partial melting of the Mackenzie LIP mantle source. This composition is similar to that calculated for 1.27 Ga primitive upper mantle. Parental magmas were probably derived from a mantle source unaffected by long- term, large-scale melt depletion, with no appreciable input from recycled crust and lithosphere, or putative core contributions.

Day, JMD, Moynier F, Meshik AP, Pradivtseva OV, Pettit DR.  2017.  Evaporative fractionation of zinc during the first nuclear detonation. Science Advances. 3(2):e1602668.   10.1126/sciadv.1602668   Abstract

Volatile element and compound abundances vary widely in planets and were set during the earliest stages of solar system evolution. Experiments or natural analogs approximating these early conditions are limited. Using silicate glass formed from arkosic sands during the first nuclear detonation at the Trinity test site, New Mexico, we show that the isotopes of zinc were fractionated during evaporation. The green silicate glasses, termed “trinitite,” show +0.5 ± 0.1‰/atomic mass unit isotopic fractionation from ~200 m to within 10 m of ground zero of the detonation, corresponding to an α fractionation factor between 0.999 and 0.9995. These results confirm that Zn isotopic fractionation occurs through evaporation processes at high temperatures. Evidence for similar fractionations in lunar samples consequently implies a volatile-depleted bulk Moon, with evaporation occurring during a giant impact or in a magma ocean.

Day, JMD, Corder CA, Assayag N, Cartigny P.  2019.  Ferrous oxide-rich asteroid achondrites. Geochimica et Cosmochimica Acta. 266:544-567.   j.gca.2019.04.005   Abstract

Ferrous oxide (FeO)-rich asteroid achondrites can be defined as asteroid-derived samples that experienced incipient partial melting processes in the early Solar System (>4.5 Ga) leading to melt-residues and cumulate and melt rocks that have high FeO in silicate grains (molar Mg/ [Mg + Fe] <80), implying relatively oxidative conditions (fO2 of IW +1 to +3). These achondrites include olivine-dominated brachinite and brachinite-like achondrite meteorites, ungrouped meteorites including Lewis Cliff 88763, Northwest Africa (NWA) 6693 and NWA 6704, Tafassasset, NWA 011/1296, and the oligoclase-rich meteorites Graves Nunataks (GRA) 06128 and GRA 06129. Ferrous oxide-rich asteroidal achondrites differ from other partially-melted achondrites, including ureilites and acapulcoite-lodranites in that the latter have higher molar Mg/ (Mg + Fe) in silicate grains, and lower fO2 (IW 0 to -2). New mineral chemical, whole-rock major- and trace-element and highly siderophile element (HSE: Re, Os, Ir, Ru, Rh, Pt, Pd, Au) abundance data, and O and Os isotope data are presented for FeO-rich achondrite meteorites Allan Hills 84025 (brachinite), Miller Range (MIL) 090206 and MIL 090405 (brachinite-like achondrites), and NWA 6693 (ungrouped). These results, combined with available data for FeO-rich asteroidal achondrites, reveal that these rocks include nearly-pure residues after partial melting, to samples formed by melt-rock reaction and as cumulates, requiring variable to extensive Fe-Ni-S partial melting, and between 1 to 20% silicate partial melting. The FeO-rich asteroidal achondrites originate from at least four distinct parent bodies, based on O-Cr-Ti isotope systematics, and occur in both carbonaceous and non-carbonaceous chondrite precursor sources. The initial water and volatile contents of FeO-rich asteroid achondrites were similar to carbonaceous chondrite groups, implying both carbonaceous and non-carbonaceous precursor materials generated water-rich partially-melted asteroidal bodies. The existence and recognition of FeO-rich asteroid achondrites explains the otherwise enigmatic nature of some iron meteorite groups (e.g., IVA, IVB) that require segregation from an oxidized asteroid parent body. The internal structure of some asteroid parent bodies was likely to be complex, reflecting early differentiation processes of nascent core formation, Fe-Ni-S melt pooling, variable silicate partial melting, igneous differentiation and the important role of melt-rock reaction, melt refertilization and late-stage C- (reduced bodies) or S-rich (oxidized bodies) fluid and vapor reactions.

Day, JMD.  2016.  Evidence against an ancient non-chondritic mantle source for North Atlantic Igneous Province lavas. Chemical Geology. 440:91-100.   10.1016/j.chemgeo.2016.07.002   Abstract

North Atlantic Igneous Province (NAIP) lavas host olivine with the highest 3He/4He ever measured for terrestrial
igneous rocks (up to 50 RA, or 4He/3He = ~15,300). The relationship of high-3He/4He with Pb isotope compositions
close to the terrestrial geochron and 143Nd/144Nd plausibly consistentwith supra-chondritic mantle Sm/Nd
in Baffin Island and West Greenland lavas has been interpreted to reflect an ancient ‘non-chondritic’ mantle
source signature. Alternatively, assimilation of continental crustal rocks with unradiogenic Pb isotope compositions
and low 143Nd/144Nd, into magmaswith high-3He/4He, and derived from variably depleted mantle sources,
could impart similar geochemical signatures. Radiogenic and stable isotope data for NAIP lavas are consistent
with origins as melts from upper mantle sources that contain low-18O/16O recycled lithosphere and/or hydrothermally
altered crust, or that have experienced pervasive contamination by crustal gneisses. Olivines from
NAIP lavas with 3He/4He spanning from 8 to 48 RA have δ18O ranging from 3.5 to 5.5‰. These compositions
are consistent with sources of ambient mantle and low-δ18O recycled lithosphere, or with concomitant crustal
assimilation and He-loss during fractional crystallization. Limited assimilation (≤1%) of incompatible element
rich crustal gneisses with low 206Pb/204Pb and 143Nd/144Nd by melts from variably depleted mantle sources
can explain Nd-Pb isotope compositions of Baffin Island and West Greenland picrites. Icelandic lavas provide
supporting evidence that the ancestral mantle plume responsible for generating NAIP magmatism sampled variably
enriched and depletedmantle,with no evidence for ancient non-chondriticmantle sources. Pervasive crustal
contamination and partial melting of heterogeneous mantle sources, generated by plate tectonic processes, can
account for the compositions of continental flood basalts (CFB),without the requirement of a non-chondritic terrestrial
reservoir. Combined with evidence that the 142Nd/144Nd composition of the bulk silicate Earth is due to
nucleosynthetic S-process deficits in chondrite meteorites, these observations cast doubt thatNAIP lavas sampled
a non-chondritic mantle source with Sm/Nd higher than in chondrites. If short-lived radiogenic (e.g.,
146Sm-142Nd, 182Hf-182W)isotope anomalies are found in CFB, theymust either reflect assimilation of isotopically
anomalous crustal materials, or partial melting of early-formed mantle heterogeneities produced by differentiation
and late accretion.

Day, JMD, Walker RJ, Ash RD, Liu Y, Rumble D, Irving AJ, Goodrich CA, Tait K, McDonough WF, Taylor LA.  2012.  Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies. Geochimica Et Cosmochimica Acta. 81:94-128.   10.1016/j.gca.2011.12.017   AbstractWebsite

New major- and trace-element abundances, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundances, and oxygen and rhenium-osmium isotope data are reported for oligoclase-rich meteorites Graves Nunataks 06128 and 06129 (GRA 06128/9), six brachinites (Brachina; Elephant Morraine 99402/7; Northwest Africa (NWA) 1500; NWA 3151; NWA 4872; NWA 4882) and three olivine-rich achondrites, which are referred to here as brachinite-like achondrites (NWA 5400; NWA 6077; Zag (b)). GRA 06128/9 represent examples of felsic and highly-sodic melt products from an asteroid that may provide a differentiation complement to brachinites and/or brachinite-like achondrites. The new data, together with our petrological observations, are consistent with derivation of GRA 06128/9, brachinites and the three brachinite-like achondrites from nominally volatile-rich and oxidised 'chondritic' precursor sources within their respective parent bodies. Furthermore, the range of Delta O-17 values (similar to 0 parts per thousand to -0.3 parts per thousand) among the meteorites indicates generation from isotopically heterogeneous sources that never completely melted, or isotopically homogenised. It is possible to generate major-and trace-element compositions similar to brachinites and the three studied brachinite-like achondrites as residues of moderate degrees (13-30%) of partial melting of primitive chondritic sources. This process was coupled with inefficient removal of silica-saturated, high Fe/Mg felsic melts with compositions similar to GRA 06128/9. Melting of the parent bodies of GRA 06128/9, brachinites and brachinite-like achondrites halted well before extensive differentiation, possibly due to the exhaustion of the short-lived radionuclide Al-26 by felsic melt segregation. This mechanism provides a potential explanation for the cessation of run-away melting in asteroids to preserve achondrites such as GRA 06128/9, brachinites, brachinite-like achondrites, acapulcoite-lodranites, ureilites and aubrites. Moderate degrees of partial melting of chondritic material and generation of Fe-Ni-S-bearing melts are generally consistent with HSE abundances that are within factors of similar to 2-10 x CI-chondrite abundances for GRA 06128/9, brachinites and the three brachinite-like achondrites. However, in detail, brachinite-like achondrites NWA 5400, NWA 6077 and Zag (b) are interpreted to have witnessed single-stage S-rich metal segregation, whereas HSE in GRA 06128/9 and brachinites have more complex heritages. The HSE compositions of GRA 06128/9 and brachinites require either: (1) multiple phases in the residue (e. g., metal and sulphide); (2) fractionation after generation of an initial melt, again involving multiple phases; (3) fractional fusion, or; (4) a parent body with non-chondritic relative HSE abundances. Petrological and geochemical observations permit genetic links (i.e., same parent body) between GRA 06128/9 and brachinites and similar formation mechanisms for brachinites and brachinite-like achondrites. (C) 2011 Elsevier Ltd. All rights reserved.