Export 110 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Wang, K, Day JMD, Korotev RL, Zeigler RA, Moynier F.  2014.  Iron isotope fractionation during sulfide-rich felsic partial melting in early planetesimals. Earth and Planetary Science Letters. 392:124-132.   10.1016/j.epsl.2014.02.022   Abstract

New Fe isotope data of feldspar-rich meteorites Graves Nunataks 06128 and 06129 (GRA 06128/9) reveal that they are the only known examples of crustal materials with isotopically light Fe isotope compositions (View the MathML source; δ 56Fe is defined as the per mille deviation of a sample's 56Fe/54Fe ratio from the IRMM-014 standard) in the Solar System. In contrast, associated brachinites, as well as brachinite-like achondrites, have Fe isotope compositions (View the MathML source) that are isotopically similar to carbonaceous chondrites and the bulk terrestrial mantle. In order to understand the cause of Fe isotope variations in the GRA 06128/9 and brachinite parent body, we also report the Fe isotope compositions of metal, silicate and sulfide fractions from three ordinary chondrites (Semarkona, Kernouve, Saint-Séverin). Metals from ordinary chondrites are enriched in the heavier isotopes of Fe (average View the MathML source), sulfide fractions are enriched in the lighter isotopes of Fe (average View the MathML source), and the δ 56Fe values of the silicates are coincident with that of the bulk rock (average View the MathML source).

The enrichment of light isotopes of Fe isotopes in GRA 06128/9 is consistent with preferential melting of sulfides in precursor chondritic source materials leading to the formation of Fe–S-rich felsic melts. Conceptual models show that melt generation to form a GRA 06128/9 parental melt occurred prior to the onset of higher-temperature basaltic melting (<1200 °C) in a volatile-rich precursor and led to the generation of buoyant felsic melt with a strong Fe–S signature. These models not only reveal the origin of enrichment in light isotopes of Fe for GRA 06128/9, but are also consistent with petrological and geochemical observations, experimental studies for the origin of Fe–S-rich felsic melts, and for the cessation of early melting on some asteroidal parent bodies because of the effective removal of the major radioactive heat-source, 26Al. The mode of origin for GRA 06128/9 contrasts strongly with crust formation on Earth, the Moon, Mars and other asteroids, where mantle differentiation and/or oxygen activity are the major controls on crustal Fe isotope compositions.

Inglis, EC, Moynier F, Creech J, Deng Z, Day JMD, Teng F-Z, Bizzarro M, Jackson M, Savage P.  2019.  Isotopic fractionation of zirconium during magmatic differentiation and the stable isotope composition of the silicate Earth. Geochimica et Cosmochimica Acta. 250:311-323.   10.1016/j.gca.2019.02.010   Abstract

High-precision double-spike Zr stable isotope measurements (expressed as δ94/90ZrIPGP-Zr, the permil deviation of the 94Zr/90Zr ratio from the IPGP-Zr standard) are presented for a range of ocean island basalts (OIB) and mid-ocean ridge basalts (MORB) to examine mass-dependent isotopic variations of zirconium in Earth. Ocean island basalt samples, spanning a range of radiogenic isotopic flavours (HIMU, EM) show a limited range in δ94/90ZrIPGP-Zr (0.046 ± 0.037‰; 2sd, n = 13). Similarly, MORB samples with chondrite-normalized La/Sm of >0.7 show a limited range in δ94/90ZrIPGP-Zr (0.053 ± 0.040‰; 2sd, n = 8). In contrast, basaltic lavas from mantle sources that have undergone significant melt depletion, such as depleted normal MORB (N-MORB) show resolvable variations in δ94/90ZrIPGP-Zr, from −0.045 ± 0.018 to 0.074 ± 0.023‰. Highly evolved igneous differentiates (>65 wt% SiO2) from Hekla volcano in Iceland are isotopically heavier than less evolved igneous rocks, up to 0.53‰. These results suggest that both mantle melt depletion and extreme magmatic differentiation leads to resolvable mass-dependent Zr isotope fractionation. We find that this isotopic fractionation is most likely driven by incorporation of light isotopes of Zr within the 8-fold coordinated sites of zircons, driving residual melts, with a lower coordination chemistry, towards heavier values. Using a Rayleigh fractionation model, we suggest a αzircon-melt of 0.9995 based on the whole rock δ94/90ZrIPGP-Zr values of the samples from Hekla volcano (Iceland). Zirconium isotopic fractionation during melt-depletion of the mantle is less well-constrained, but may result from incongruent melting and incorporation of isotopically light Zr in the 8-fold coordinated M2 site of orthopyroxene. Based on these observations lavas originating from the effect of melt extraction from a depleted mantle source (N-MORB) or that underwent zircon saturation (SiO2 > 65 wt%) are removed from the dataset to give an estimate of the primitive mantle Zr isotope composition of 0.048 ± 0.032‰; 2sd, n = 48. These data show that major controls on Zr fractionation in the Earth result from partial melt extraction in the mantle and by zircon fractionation in differentiated melts. Conversely, fertile mantle is homogenous with respect to Zr isotopes. Zirconium mass-dependent fractionation effects can therefore be used to trace large-scale mantle melt depletion events and the effects of felsic crust formation.

Franz, HB, Kim ST, Farquhar J, Day JMD, Economos RC, McKeegan KD, Schmitt AK, Irving AJ, Hoek J, Dottin J.  2014.  Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars. Nature. 508:364-+.   10.1038/nature13175   AbstractWebsite

The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear(1). This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts(1,2) or in mixing between enriched and depleted mantle reservoirs(3). Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet's history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth(4).

Schnare, DW, Day JMD, Norman MD, Liu Y, Taylor LA.  2008.  A laser-ablation ICP-MS study of Apollo 15 low-titanium olivine-normative and quartz-normative mare basalts. Geochimica Et Cosmochimica Acta. 72:2556-2572.   10.1016/j.gca.2008.02.021   AbstractWebsite

Apollo 15 low-Ti mare basalts have traditionally been subdivided into olivine- and quartz-normative basalt types, based on their different SiO(2), FeO, and TiO(2) whole-rock compositions. Previous studies have reconciled this compositional diversity by considering the olivine- and quartz-normative basalts as originating from different lunar mantle source regions. To provide new information on the compositions of Apollo 15 low-Ti mare basalt parental magmas, we report a study of major and trace-element compositions of whole rocks, pyroxenes, and other phases in the olivine-normative basalts 15016 and 15555 and quartz-normative basalts 15475 and 15499. Results show similar rare-earth-element patterns in pyroxenes from all four basalts. The estimated equilibrium parental-melt compositions from the trace-element compositions of pyroxenes are similar for 15016, 15555 and 15499. Additionally, an independent set of trace-element distribution coefficients has been determined from measured pyroxene and mesostasis compositions in sample 15499. These data suggest that fractional crystallization may be a viable alternative to compositional differences in the mantle source to explain the similar to 25% difference in whole-rock TiO(2), and corresponding differences in SiO(2) and FeO between the Apollo 15 olivine- and quartz-normative basalts. In this model, the older (similar to 3.35 Ga) quartz-normative basalts, with lower TiO(2) experienced olivine, chromite, and Cr-ulvospinel fractionation at 'crustal levels' in magma chambers or dikes, followed by limited near-surface mineral fractionation, within the lava flows. In contrast, the younger (similar to 3.25 Ga) olivine-normative basalts experienced only limited magmatic differentiation at 'crustal-levels', but extensive near-surface mineral fractionation to produce their evolved mineral compositions. A two-stage mineral-fractionation model is consistent with textural and mineralogical observations, as well as the mineral trace-element constraints developed by this study. (C) 2008 Elsevier Ltd. All rights reserved.

Day, JMD, Walker RJ, Qin LP, Rumble D.  2012.  Late accretion as a natural consequence of planetary growth. Nature Geoscience. 5:614-617.   10.1038/ngeo1527   AbstractWebsite

Core formation should strip highly siderophile elements (HSEs) from planetary mantles according to the expected metal-silicate partitioncoefficients(1,2). However, studies of Earth(3), the Moon(4) and Mars(5) indicate mantles with HSE abundances in chondrite-relative proportions that exceed the values expected from metal-silicate partitioning. Competing hypotheses have been proposed to account for these observations, including metal-silicate partitioning at higher pressures and temperatures(6) and late accretion(7). Here we present petrological and geochemical analyses of diogenite meteorites that represent mantle and crustal materials from two or more differentiated asteroids. We find that diogenites show HSE abundances that are consistent with metal-silicate equilibration, followed by minor continued accretion. Isotope chronometry supports diogenite crystallization ages within 2-3 million years of Solar System formation, indicating that late accretion occurred earlier than postulated for Earth, the Moon and Mars. The early timing and occurrence on differentiated asteroids, as well as on the larger terrestrial planets, therefore ties late accretion to planetary growth. On asteroidal bodies, such as the diogenite parent bodies, variations in HSE compositions may reflect regional rather than global effects. In contrast, for Earth, the Moon and Mars, compositional variations in mantle materials seem to be consistent with more homogeneous distributions through prolonged melting and/or solid-state convection.

Day, JMD, Moynier F, Shearer CK.  2017.  Late-stage magmatic outgassing from a volatile-depleted Moon. Proceedings of the National Academy of Sciences. 114(35):9547-9551.   10.1073/pnas.1708236114   AbstractWebsite

The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.

O'Driscoll, B, Walker RJ, Clay PL, Day JMD, Ash RD, Daly JS.  2018.  Length-scales of chemical and isotopic heterogeneity in the mantle section of the Shetland Ophiolite Complex, Scotland. Earth and Planetary Science Letters. 488:144-154.   Abstract

Kilometre to sub-metre scale heterogeneities have been inferred in the oceanic mantle based on sampling of both ophiolites and abyssal peridotites. The ∼492 Ma Shetland Ophiolite Complex (SOC) contains a well-preserved mantle section that is dominated by harzburgite (∼70 vol.%) previously reported to have variable major and trace element compositions, yet dominantly chondritic initial 187Os/188Os compositions. To assess the preservation of compositional heterogeneities at sub-metre length-scales in the oceanic mantle, a ∼45 m2 area of the SOC mantle section was mapped and sampled in detail. Harzburgites, dunites and a pyroxenite from this area were analysed for lithophile and highly-siderophile element (HSE) abundances, as well as for 187Os/188Os ratios. Lithophile element data for most rocks are characteristic of supra-subduction zone (SSZ) metasomatic processes. Two dunites have moderately fractionated HSE patterns and suprachondritic γOs(492 Ma) values (+5.1 and +7.5) that are also typical of ophiolitic dunites generated by SSZ melt–rock interactions. By contrast, six harzburgites and four dunites have approximately chondritic-relative abundances of Os, Ir and Ru, and γOs(492 Ma) values ranging only from −0.6 to +2.7; characteristics that imply no significant influence during SSZ processes. Two harzburgites are also characterised by significantly less radiogenic γOs(492 Ma) values (−3.5 and −4), and yield Mesoproterozoic time of Re depletion (TRD) model ages. The range of Os isotope compositions in the studied area is comparable to the range reported for a suite of samples representative of the entire SOC mantle section, and approaches the total isotopic variation of the oceanic mantle, as observed in abyssal peridotites. Mechanisms by which this heterogeneity can be formed and preserved involve inefficient and temporally distinct melt extraction events and strong localised channelling of these melts.

Magna, T, Day JMD, Mezger K, Fehr MA, Dohmen R, Aoudjehane HC, Agee CB.  2015.  Lithium isotope constraints on crust–mantle interactions and surface processes on Mars. Geochimica et Cosmochimica Acta. 162:46-65.   10.1016/j.gca.2015.04.029   Abstract

Lithium abundances and isotope compositions are reported for a suite of martian meteorites that span the range of petrological and geochemical types recognized to date for Mars. Samples include twenty-one bulk-rock enriched, intermediate and depleted shergottites, six nakhlites, two chassignites, the orthopyroxenite Allan Hills (ALH) 84001 and the polymict breccia Northwest Africa (NWA) 7034. Shergottites unaffected by terrestrial weathering exhibit a range in δ7Li from 2.1 to 6.2‰, similar to that reported for pristine terrestrial peridotites and unaltered mid-ocean ridge and ocean island basalts. Two chassignites have δ7Li values (4.0‰) intermediate to the shergottite range, and combined, these meteorites provide the most robust current constraints on δ7Li of the martian mantle. The polymict breccia NWA 7034 has the lowest δ7Li (−0.2‰) of all terrestrially unaltered martian meteorites measured to date and may represent an isotopically light surface end-member.

The new data for NWA 7034 imply that martian crustal surface materials had both a lighter Li isotope composition and elevated Li abundance compared with their associated mantle. These findings are supported by Li data for olivine-phyric shergotitte NWA 1068, a black glass phase isolated from the Tissint meteorite fall, and some nakhlites, which all show evidence for assimilation of a low-δ7Li crustal component. The range in δ7Li for nakhlites (1.8 to 5.2‰), and co-variations with chlorine abundance, suggests crustal contamination by Cl-rich brines. The differences in Li isotope composition and abundance between the martian mantle and estimated crust are not as large as the fractionations observed for terrestrial continental crust and mantle, suggesting a difference in the styles of alteration and weathering between water-dominated processes on Earth versus possibly Cl–S-rich brines on Mars. Using high-MgO shergottites (>15 wt.% MgO) it is possible to estimate the δ7Li of Bulk Silicate Mars (BSM) to be 4.2 ± 0.9‰ (2σ). This value is at the higher end of estimates for the Bulk Silicate Earth (BSE; 3.5 ± 1.0‰, 2σ), but overlaps within uncertainty.

Day, JMD.  2019.  Low retention of impact material by the Moon. Nature. 571:177-178.   doi: 10.1038/d41586-019-02066-w   Abstract

Simulations demonstrate that the Moon’s ability to retain material from striking impactors is lower than was previously assumed. This finding helps to explain the scarcity of precious metals in the Moon relative to Earth

Rahib, RH, Udry A, Howarth GH, Gross J, Paquet M, Combs LM, Laczniak DL, Day JMD.  2019.  Mantle source to near-surface emplacement of enriched and intermediate poikilitic shergottites in Mars. Geochimica et Cosmochimica Acta. 266:463-496.   j.gca.2019.07.034   Abstract

Poikilitic shergottites make up >20% of the current martian meteorite collection, with a total of 27 samples. These meteorites are intrusive gabbroic to lherzolitic rocks and represent igneous materials recording important processes in the martian crust. To further constrain petrogenetic relationships amongst enriched and intermediate poikilitic shergottites, we studied a comprehensive suite of poikilitic shergottites — including four newly recovered samples (Northwest Africa [NWA] 11065, NWA 11043, NWA 10961, NWA 10618) — using bulk rock major- and trace-element compositions, mineral major-element compositions, oxygen fugacity (ƒO2) values, crystallization temperatures, phosphorus maps of olivine grains, and quantitative textural analyses. The characteristic bimodal textures (poikilitic and non-poikilitic textures) of poikilitic shergottites record evolving magmatic conditions at different stages of crystallization. Higher temperatures and more reducing conditions during early-stage crystallization are recorded in the poikilitic textures, while lower temperature and more oxidizing conditions are recorded in the non-poikilitic textures during late-stage crystallization. Oxygen fugacity estimates relative to the quartz-fayalite-magnetite (QFM) buffer for early-stage olivine-pyroxene-spinel assemblages of enriched and intermediate poikilitic shergottites suggest decoupling of ƒO2 and the degree of light rare earth element (LREE)-enrichment (i.e., [La/Yb]CI). An increase in ƒO2 exceeding 1 log unit from poikilitic to non-poikilitic textures implies degassing, with possible auto-oxidation, and/or crustal contamination. Quantitative textural analyses support the emplacement of both enriched and intermediate poikilitic shergottites as various shallow intrusive bodies, as well as a potentially widespread emplacement mechanism responsible for a major lithology of the martian crust. In addition, early assemblages (i.e., pyroxene oikocrysts) of all the poikilitic shergottites likely formed close to the crust-mantle boundary, implying a possible widespread presence of magma staging chambers at these depths. Fractional crystallization and magma storage in these chambers could have possibly resulted in all of the different enriched and intermediate shergottites that have been analyzed from Mars.

Day, JMD, Tait KT, Udry A, Moynier F, Liu Y, Neal CR.  2018.  Martian magmatism from plume metasomatized mantle. Nature Communications. 9:4799.   10.1038/s41467-018-07191-0   Abstract

Direct analysis of the composition of Mars is possible through delivery of meteorites to Earth. Martian meteorites include ∼165 to 2400 Ma shergottites, originating from depleted to enriched mantle sources, and ∼1340 Ma nakhlites and chassignites, formed by low degree partial melting of a depleted mantle source. To date, no unified model has been proposed to explain the petrogenesis of these distinct rock types, despite their importance for understanding the formation and evolution of Mars. Here we report a coherent geochemical dataset for shergottites, nakhlites and chassignites revealing fundamental differences in sources. Shergottites have lower Nb/Y at a given Zr/Y than nakhlites or chassignites, a relationship nearly identical to terrestrial Hawaiian main shield and rejuvenated volcanism. Nakhlite and chassignite compositions are consistent with melting of hydrated and metasomatized depleted mantle lithosphere, whereas shergottite melts originate from deep mantle sources. Generation of martian magmas can be explained by temporally distinct melting episodes within and below dynamically supported and variably metasomatized lithosphere, by long-lived, static mantle plumes.

Day, JMD, Harvey RP, Hilton DR.  2019.  Melt-modified lithosphere beneath Ross Island and its role in the tectono-magmatic evolution of the West Antarctic Rift System. Chemical Geology. 518:45-54.   Abstract

Mantle lithosphere influences rift system tectonic evolution, yet the age and composition of rifted lithosphere is typically difficult to constrain due to limited sampling. In the West Antarctic Rift System (WARS), Cenozoic to recent alkaline volcanic rocks yield a variety of peridotite and pyroxenite xenoliths that allow sampling of lithosphere. We report osmium and helium isotope data, elemental abundances, and petrology, for a suite of xenoliths and lavas from the Hut Point Peninsula of Ross Island. Recently (<1.3 Ma) erupted basanites yield fresh dunite and harzburgite (olivine forsterite [Fo] 90.1-88.2), lherzolite (Fo90.6-87.4), and pyroxenite xenoliths (Fo89.3-87.3). The basanite lavas contain abundant large olivine xenocrysts (Fo89.7-88.0), with more ferroan matrix olivine grains (Fo83.7-81.2) and have HIMU-like incompatible trace-element signatures. The 3He/4He ratios (6.8 ±0.3RA; 2SD) defined by co-existing He-rich xenoliths indicate a mantle source distinct from high-3He/4He plume mantle. Pyroxenite and lherzolite xenoliths have similar relative abundances of incompatible trace elements to host lavas, whereas dunite xenoliths have refractory compositions. Melt-rock reaction occurring in the xenoliths is demonstrated by replacement by amphibole or clinopyroxene to form pyroxenite and lherzolite lithologies, or as amphibole-impregnated dunites. The 187Re-187Os systematics of the lavas, pyroxenites and lherzolites define an apparent isochron, with initial 187Os/188Os ratio of 0.1286 ±0.0001. The initial 187Os/188Os is within uncertainty of dunite and harzburgite xenolith Os isotope compositions (0.1279-0.1303). Pervasive evidence for melt-rock interaction indicates that the straight-line relationship in 187Re/188Os-187Os/188Os space is a mixing line between high Re/Os lavas with radiogenic 187Os/188Os, and dunite and harzburgite. Petrological and geochemical evidence indicates that dunite and harzburgite xenoliths represent young lithosphere, with rhenium depletion ages up to ~250 Ma. The timing of formation and composition of the Hut Point Peninsula xenoliths are consistent with both destruction and creation of mantle lithosphere during or after subduction along the Gondwana margin, prior to WARS formation. Modification of mantle lithosphere by subduction is also consistent with generation of HIMU-like metasomatized mantle reservoirs that fed Cenozoic to recent alkali volcanism of Mount Erebus and the WARS. The presence of young lithosphere within the WARS has collateral implications for rift dynamics and melting processes, especially beneath Mount Erebus, contrasting with older lithospheric mantle beneath the Trans-Antarctic Mountains and Marie Byrd Land.

Korhonen, FJ, Saito S, Brown M, Siddoway CS, Day JMD.  2010.  Multiple Generations of Granite in the Fosdick Mountains, Marie Byrd Land, West Antarctica: Implications for Polyphase Intracrustal Differentiation in a Continental Margin Setting. Journal of Petrology. 51:627-670.   10.1093/petrology/egp093   AbstractWebsite

Production of granite in the middle to lower crust and emplacement into the middle to upper crust at convergent plate margins is the dominant mechanism of crustal differentiation. The Fosdick Mountains of West Antarctica host migmatitic paragneisses and orthogneisses corresponding to the middle to lower crust and granites emplaced as dikes, sills and small plutons, which record processes of intracrustal differentiation along the East Gondwana margin. U-Pb chronology on magmatic zircon from granites reveals emplacement at c. 358-336 Ma and c. 115-98 Ma, consistent with a polyphase tectonic evolution of the region during Devonian-Carboniferous continental arc activity and Cretaceous continental rifting. The gneisses and granites exposed in the Fosdick migmatite-granite complex were derived from Early Paleozoic quartzose turbidites of the Swanson Formation and Ford Granodiorite suite calc-alkaline plutonic rocks, both of which are widely distributed outside the Fosdick Mountains and have affinity with rock elsewhere in East Gondwana. Granites of both Carboniferous and Cretaceous age have distinct chemical signatures that reflect different melting reactions and accessory phase behavior in contrasting sources. Based on whole-rock major and trace element geochemistry and Sr-Nd isotope compositions, Carboniferous granites with low Rb/Sr are interpreted to be products of melting of the Ford Granodiorite suite. Extant mineral equilibria modeling indicates that the Ford Granodiorite suite compositions produce melt volumes > 10 vol. % at temperatures above biotite stability, involving the breakdown of hornblende + plagioclase, consistent with the high CaO and Na(2)O contents in the low Rb/Sr granites. The Carboniferous low Rb/Sr granites show a sequence from near-melt compositions to compositions with increasing amounts of early crystallized biotite and plagioclase and evidence for apatite dissolution in the source. Carboniferous granites derived from the Swanson Formation are scarce, suggesting that the significant quantities of melt produced from the now residual paragneisses were emplaced at shallower crustal levels than are now exposed. The Cretaceous granites are divided into two distinct groups. An older group of granites (c. 115-110 Ma) has compositions consistent with a dominant Ford Granodiorite source, and characteristics that indicate that they may be less evolved equivalents of the regionally exposed Byrd Coast Granite suite at higher crustal levels. The younger group of granites (c. 109-102 Ma) has distinct light rare earth element depleted signatures. The chemical and isotopic data suggest that these granites were derived from partial melting of both fertile and residual Swanson Formation and had low water contents, indicating that the source rocks may have been dehydrated prior to anatexis as the Byrd Coast Granite suite magmas were transferring through and accumulating at higher crustal levels. The Cretaceous granites derived from the Swanson Formation make up a prominent horizontally sheeted leucogranite complex. The accumulation of these melts probably facilitated melt-induced weakening of the crust during a well-documented transition from regional shortening to regional extension, the formation of a detachment structure, and rapid exhumation of the Fosdick migmatite-granite complex. These multiple episodes of melting along the East Gondwana margin resulted in initial stabilization of the continental crust in the Carboniferous and further intracrustal differentiation in the Cretaceous.

Day, JMD, Taylor LA.  2007.  On the structure of mare basalt lava flows from textural analysis of the LaPaz Icefield and Northwest Africa 032 lunar meteorites. Meteoritics & Planetary Science. 42:3-17. AbstractWebsite

Quantitative textural data for Northwest Africa (NWA) 032 and the LaPaz (LAP) mare basalt meteorites (LAP 02205, LAP 02224, LAP 02226, and LAP 02436) provide constraints on their crystallization and mineral growth histories. In conjunction with whole-rock and mineral chemistry, textural analysis provides powerful evidence for meteorite pairing. Petrographic observations and crystal size distribution (CSD) measurements of NWA 032 indicate a mixed population of slowly cooled phenocrysts and faster cooled matrix. LaPaz basalt crystal populations are consistent with a single phase of nucleation and growth. Spatial distribution patterns (SDP) of minerals in the meteorites highlight the importance of clumping and formation of clustered crystal frameworks in their melts, succeeded by continued nucleation and growth of crystals. This process resulted in increasingly poor sorting, during competition for growth, as the melt crystallized. Based on CSD and SDP data, we suggest a potential lava flow geometry model to explain the different crystal populations for NWA 032 and the LaPaz basalts. This model involves crystallization of early formed phenocrysts at hypabyssal depths in the lunar crust, followed by eruption and flow differentiation on the lunar surface. Lava flow differentiation would allow for formation of a cumulate base and facilitate variable cooling within the stratigraphy, explaining the varied textures and modal mineralogies of mare basalt meteorites. The model may also provide insight into the relative relationships of some Apollo mare basalt suites, shallow-level crystal fractionation processes, and the nature of mare basalt volcanism over lunar history.

Day, JMD, Hilton DR.  2011.  Origin of (3)He/(4)He ratios in HIMU-type basalts constrained from Canary Island lavas. Earth and Planetary Science Letters. 305:226-234.   10.1016/j.epsl.2011.03.006   AbstractWebsite

New helium isotope and abundance measurements are reported for olivine and clinopyroxene phenocrysts from HIMU-type (high-mu=elevated (238)U/(204)Pb) lavas and xenoliths spanning the stratigraphies of El Hierro and La Palma, Canary Islands. Some pyroxene phenocrysts have suffered post-eruptive modification, either by less than 1% assimilation of crustal-derived He, or by closed-system ageing of He. Olivine phenocrysts record mantle source (3)He/(4)He compositions, with the average (3)He/(4)He for La Palma olivine (7.6 +/- 0.8R(A), where R(A) is the atmospheric (3)He/(4)He ratio of 1.38 x 10(-6)) being within uncertainty of those for El Hierro (7.7 +/- 0.3R(A)), and the canonical mid-ocean ridge basalt range (MORB: 8 +/- 1R(A)). The new helium isotope data for El Hierro and La Palma show no distinct correlations with whole-rock (87)Sr/(86)Sr, (143)Nd/(144)Nd, (187)Os/(188)Os, or Pb isotopes, but (3)He/(4)He ratios for La Palma lavas correlate with (18)O/(16)O measured for the same phenocryst populations. Despite limited (3)He/(4)He variations for El Hierro and La Palma, their He-O isotope systematics are consistent with derivation from mantle sources containing distinct recycled oceanic basaltic crust (El Hierro) and gabbroic lithosphere (La Palma) components that have mixed with depleted mantle, and a high-(3)He/(4)He component (>9.7R(A)) in the case of La Palma. The new data are consistent with models involving generation of compositionally and lithologically (e.g., pyroxenite, eclogite, peridotite) heterogeneous mantle sources containing recycled oceanic crust and lithosphere entrained within upwelling high-(3)He/(4)He mantle that has been severely diluted by interaction with depleted mantle. We propose that the noble gas systematics of HIMU-type lavas and ocean island basalts (OIB) in general, are most simply interpreted as being controlled by the most gas-rich reservoir involved in mixing to generate their mantle sources. In this scenario, HIMU and enriched mantle (EM) sources are dominated by depleted mantle, or high-(3)He/(4)He mantle, because recycled crust and lithosphere have low He concentrations. Consequently, high-(3)He/(4)He OIB would predominantly reflect derivation from a less depleted mantle source with sub-equal to higher He contents than depleted mantle. The available coupled He-O isotope systematics measured for OIB lavas are consistent with this hypothesis. (C) 2011 Elsevier B.V. All rights reserved.

Day, JMD, Walker RJ, Ash RD, Liu Y, Rumble D, Irving AJ, Goodrich CA, Tait K, McDonough WF, Taylor LA.  2012.  Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies. Geochimica Et Cosmochimica Acta. 81:94-128.   10.1016/j.gca.2011.12.017   AbstractWebsite

New major- and trace-element abundances, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundances, and oxygen and rhenium-osmium isotope data are reported for oligoclase-rich meteorites Graves Nunataks 06128 and 06129 (GRA 06128/9), six brachinites (Brachina; Elephant Morraine 99402/7; Northwest Africa (NWA) 1500; NWA 3151; NWA 4872; NWA 4882) and three olivine-rich achondrites, which are referred to here as brachinite-like achondrites (NWA 5400; NWA 6077; Zag (b)). GRA 06128/9 represent examples of felsic and highly-sodic melt products from an asteroid that may provide a differentiation complement to brachinites and/or brachinite-like achondrites. The new data, together with our petrological observations, are consistent with derivation of GRA 06128/9, brachinites and the three brachinite-like achondrites from nominally volatile-rich and oxidised 'chondritic' precursor sources within their respective parent bodies. Furthermore, the range of Delta O-17 values (similar to 0 parts per thousand to -0.3 parts per thousand) among the meteorites indicates generation from isotopically heterogeneous sources that never completely melted, or isotopically homogenised. It is possible to generate major-and trace-element compositions similar to brachinites and the three studied brachinite-like achondrites as residues of moderate degrees (13-30%) of partial melting of primitive chondritic sources. This process was coupled with inefficient removal of silica-saturated, high Fe/Mg felsic melts with compositions similar to GRA 06128/9. Melting of the parent bodies of GRA 06128/9, brachinites and brachinite-like achondrites halted well before extensive differentiation, possibly due to the exhaustion of the short-lived radionuclide Al-26 by felsic melt segregation. This mechanism provides a potential explanation for the cessation of run-away melting in asteroids to preserve achondrites such as GRA 06128/9, brachinites, brachinite-like achondrites, acapulcoite-lodranites, ureilites and aubrites. Moderate degrees of partial melting of chondritic material and generation of Fe-Ni-S-bearing melts are generally consistent with HSE abundances that are within factors of similar to 2-10 x CI-chondrite abundances for GRA 06128/9, brachinites and the three brachinite-like achondrites. However, in detail, brachinite-like achondrites NWA 5400, NWA 6077 and Zag (b) are interpreted to have witnessed single-stage S-rich metal segregation, whereas HSE in GRA 06128/9 and brachinites have more complex heritages. The HSE compositions of GRA 06128/9 and brachinites require either: (1) multiple phases in the residue (e. g., metal and sulphide); (2) fractionation after generation of an initial melt, again involving multiple phases; (3) fractional fusion, or; (4) a parent body with non-chondritic relative HSE abundances. Petrological and geochemical observations permit genetic links (i.e., same parent body) between GRA 06128/9 and brachinites and similar formation mechanisms for brachinites and brachinite-like achondrites. (C) 2011 Elsevier Ltd. All rights reserved.

Day, JMD, Walker RJ, Warren JM.  2017.  Os-186-Os-187 and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochimica et Cosmochimica Acta. 200:232-254.   10.1016/j.gca.2016.12.013   Abstract

Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history.

Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ±21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ±20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ±25), and 186Os/188Os of 0.1198388 ±29, both of which are within uncertainty of previous primitive mantle estimates. The 186Os/188Os composition of the PM is less radiogenic than for some plume-related lavas, with the latter requiring sources with high long-term time-integrated Pt/Os. Estimates of primitive mantle HSE concentrations using abyssal peridotites define chondritic Pd/Ir, which differs from previous supra-chondritic estimates for Pd/Ir based on peridotites from a range of tectonic settings. By contrast, estimates of PM yield non-chondritic Ru/Ir. The cause of enhanced Ru in the mantle remains enigmatic, but may reflect variable partitioning behaviour of Ru at high pressure and temperature.

Day, JMD, Walker RJ, James OB, Puchtel IS.  2010.  Osmium isotope and highly siderophile element systematics of the lunar crust. Earth and Planetary Science Letters. 289:595-605.   10.1016/j.epsl.2009.12.001   AbstractWebsite

Coupled (187)Os/(188)Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 +/- 0.3 pg g(-1) Os, 1.5 +/- 0.6 pg g(-1) Ir, 6.8 +/- 2.7 pg g(-1) Ru, 16 +/- 15 pg g(-1) Pt,33 +/- 30 pg g(-1) Pd and 0.29 +/- 0.10 pg g(-1) Re (similar to 0.00002 x Cl) and Re/Os ratios that were modestly elevated ((187)Re/(188)Os = 0.6 to 1.7) relative to Cl chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (similar to 0.00007 x Cl) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be <= 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re.Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a 'missing component' of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion. (C) 2009 Elsevier B.V. All rights reserved.

Paquet, M, Day JMD, Castillo PR.  2019.  Osmium isotope evidence for a heterogeneous 3He/4He mantle plume beneath the Juan Fernandez Islands. Geochimica et Cosmochimica Acta. 261:1-19.   Abstract

Mantle plume models have been widely applied to explain the formation of ocean island basalts (OIB), with high-3He/4He in their lavas being explained by sampling of a primitive deep mantle source. The Juan Fernandez Islands have 3He/4He (7.8–18 RA) similar to or higher than in mid-ocean ridge basalts (MORB; 8 ± 1 RA) and have been used to both support and refute the mantle plume hypothesis. Ambiguity regarding the origin of the Juan Fernandez Islands primarily originates from interpretation of mantle source signatures between the lava series from the two main islands, Robinson Crusoe and Alexander Selkirk. To examine this issue, we report new whole-rock and olivine separate 187Os/188Os ratios and major-, trace-, and highly siderophile-element (HSE: Re, Pd, Pt, Ru, Ir, Os) abundances. The HSE and trace element abundances in Juan Fernandez main shield lavas can be explained by up to 30% olivine removal, together with spinel crystallization at 1–5 kbar, whereas Robinson Crusoe rejuvenated lavas can be reproduced by higher-pressure fractional crystallization (up to 10 kbar). An assemblage of 30 modal % olivine and 1–5 modal % spinel, combined with the additional contribution of primary melt trapped in olivine inclusions reproduces the range of HSE compositions observed in Juan Fernandez Archipelago olivine grains. Ratios of 187Os/188Os for Juan Fernandez lavas are generally less radiogenic than global OIB and show no correlation with indices of fractionation, indicating that they reflect mantle source compositions. Younger basanite lavas from Robinson Crusoe represent rejuvenated volcanism dominantly from a depleted lithospheric mantle source (187Os/188Os < 0.13) mixed with a high-3He/4He component from the main shield building stage. These lavas are similar in origin and composition to other Pacific rejuvenated lavas (e.g., Samoa, Hawaii). Robinson Crusoe main shield lavas are from a high-3He/4He (>18 RA) and enriched mantle source (187Os/188Os = 0.1312) similar to the ‘C’ or ‘FOZO’ component, whereas Alexander Selkirk lavas are consistent with a dominant contribution from a depleted, low-3He/4He (<10 RA) mantle component. The mantle sources of the shield lavas yield subtle variations in Sr-Nd-Os-Pb isotope space and have no clear variations with relative or absolute abundances of the HSE or trace elements. These results are consistent with a heterogeneous mantle plume model, with initial eruption of lavas from a primitive high-3He/4He mantle source ∼4 million years ago (Ma) to form Robinson Crusoe Island, which also led to 3He enrichment of the oceanic lithosphere, followed by eruption of Alexander Selkirk lavas from a more depleted mantle source at ∼2 Ma. Juan Fernandez lavas show that mantle heterogeneity preserved in OIB can occur over short-timescales (<2 Ma) and can impact lithospheric compositions, leading to eruption of rejuvenated lavas with unusual isotopic characteristics.

Liu, Y, Spicuzza MJ, Craddock PR, Day JMD, Valley JW, Dauphas N, Taylor LA.  2010.  Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochimica Et Cosmochimica Acta. 74:6249-6262.   10.1016/j.gca.2010.08.008   AbstractWebsite

Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock delta(18)O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO(2), Al(2)O(3)). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock delta(56)Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134 parts per thousand to 0.217 parts per thousand. and 0.038 parts per thousand, to 0.104 parts per thousand, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions. The delta(18)O and delta(56)Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average delta(56)Fe values of low-Ti basalts (0.073 +/- 0.018 parts per thousand), n = 8) and high-Ti basalts (0.191 +/- 0.020 parts per thousand, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine delta(18)O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock delta(18)O values for source regions, 5.57 parts per thousand for low-Ti and 5.30 parts per thousand for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The delta(18)O and delta(56)Fe values of the lunar upper mantle are estimated to be 5.5 +/- 0.27. (2 sigma) and 0.085 +/- 0.040 parts per thousand (2 sigma), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth's upper mantle (5.5 0.2 parts per thousand), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 +/- 0.030 parts per thousand.). (C) 2010 Elsevier Ltd. All rights reserved.

Spicuzza, MJ, Day JMD, Taylor LA, Valley JW.  2007.  Oxygen isotope constraints on the origin and differentiation of the Moon. Earth and Planetary Science Letters. 253:254-265.   10.1016/j.epsl.2006.10.030   AbstractWebsite

We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of delta O-18 values (-0.5 to 22.9 parts per thousand) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; lambda = 0.5259 +/- 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Delta O-17 for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01 parts per thousand and are indistinguishable from the TFL. The delta O-18 values of high- and low-Ti lunar basalts are distinct. Average whole-rock delta O-18 values for low-Ti lunar basalts from the Apollo 12 (5.72 +/- 0.06 parts per thousand) and Apollo 15 landing sites (5.65 +/- 0.12 parts per thousand) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 +/- 0.11 parts per thousand). Evolved low-Ti LaPaz mare-basalt meteorite delta O-18 values (5.67 +/- 0.05 parts per thousand) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in delta O-18 do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine-pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average delta O-18 (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Delta=0.18 parts per thousand) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the delta O-18 of lunar mantle olivine in this study are only 0.05 parts per thousand higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth-Moon system. (c) 2006 Elsevier B.V. All rights reserved.

Day, JMD, Macpherson CG, Lowry D, Pearson DG.  2012.  Oxygen isotope heterogeneity of the mantle beneath the Canary Islands: a discussion of the paper of Gurenko et al. Contributions to Mineralogy and Petrology. 164:177-183.   10.1007/s00410-012-0755-3   AbstractWebsite

Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) report laser-assisted fluorination (LF) and secondary ionization mass spectrometry (SIMS) O-18/O-16 datasets for olivine grains from the Canary Islands of Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro. As with prior studies of oxygen isotopes in Canary Island lavas (e.g. Thirlwall et al. Chem Geol 135:233-262, 1997; Day et al. Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010), these authors find variations in delta O-18(ol) (similar to 4.6-6.0 aEuro degrees) beyond that measured for mantle peridotite olivine (Mattey et al. Earth Planet Sci Lett 128:231-241, 1994) and interpret this variation to reflect contributions from pyroxenite-peridotite mantle sources. Furthermore, Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) speculate that delta O-18(ol) values for La Palma olivine grains measured by LF (Day et al. Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010) may be biased to low values due to the presence of altered silicate, possibly serpentine. The range in delta O-18(ol) values for Canary Island lavas are of importance for constraining their origin. Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) took a subset (39 SIMS analyses from 13 grains from a single El Hierro lava; EH4) of a more extensive dataset (321 SIMS analyses from 110 grains from 16 Canary Island lavas) to suggest that delta O-18(ol) is weakly correlated (R (2) = 0.291) with the parameter used by Gurenko et al. (Earth Planet Sci Lett 277:514-524, 2009) to describe the estimated weight fraction of pyroxenite-derived melt (Xpx). With this relationship, end-member delta O-18 values for HIMU-peridotite (delta O-18 = 5.3 +/- A 0.3 aEuro degrees) and depleted pyroxenite (delta O-18 = 5.9 +/- A 0.3 aEuro degrees) were defined. Although the model proposed by Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) implicates similar pyroxenite-peridotite mantle sources to those proposed by Day et al. (Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010) and Day and Hilton (Earth Planet Sci Lett 305:226-234, 2011), there are significant differences in the predicted delta O-18 values of end member components in the two models. In particular, Day et al. (Geochim Cosmochim Acta 74:6565-6589, 2010) proposed a mantle source for La Palma lavas with low-delta O-18 (< 5 aEuro degrees), rather than higher-delta O-18 (c.f. the HIMU-peridotite composition of Gurenko et al. in Contrib Mineral Petrol 162:349-363, 2011). Here we question the approach of using weakly correlated variations in delta O-18(ol) and the Xpx parameter to define mantle source oxygen isotope compositions, and provide examples of why this approach appears flawed. We also provide reasons why the LF datasets previously published for Canary Island lavas remain robust and discuss why LF and SIMS data may provide complementary information on oxygen isotope variations in ocean island basalts (OIB), despite unresolved small-scale uncertainties associated with both techniques.

Day, JMD, Peters BJ, Janney PE.  2014.  Oxygen isotope systematics of South African olivine melilitites and implications for HIMU mantle reservoirs. Lithos. 202-203:76-84.   10.1016/j.lithos.2014.05.009   Abstract

Oxygen isotopes are useful tracers of silicate melt generation processes because of the relatively constant abundance of oxygen in silicate reservoirs and the large isotopic fractionation that can occur between 18O and 16O during low (< 350 °C) and high (> 350 °C) temperature alteration processes at Earth's surface. Studies of oceanic island basalts (OIB) have demonstrated the important role of assimilation of hydrothermal altered crust on 18O/16O ratios, as well as evidence that some OIB mantle sources contain recycled oceanic or continental crust and lithosphere based on correlations between oxygen and radiogenic isotopes. To further investigate how oxygen isotope signatures may be used as tracers in intraplate volcanic rocks, we report olivine compositions from South African olivine melilitites. Olivine melilitites are considered to be related to Group 1 kimberlites and form from asthenospheric melting beneath mature oceanic islands or under off-craton continental lithosphere. South African olivine melilitites also exhibit radiogenic isotopic signatures similar to high-μ (HIMU; high-238U/204Pb) OIB, suggesting sources containing subducted oceanic lithosphere. Olivine from South African melilitites has trace element compositions that are consistent with a magmatic origin from a HIMU-type mantle melt and have a remarkably restricted range in primary 18O/16O ratios (δ18O = 4.99–5.26‰; Average = 5.14 ± 0.17‰, 2σ) that are within the mantle olivine range (δ18O = 5.2 ± 0.3‰). These compositions indicate that South African olivine melilitites require a HIMU mantle source with the oxygen isotope characteristics of ambient peridotite mantle and can be explain through either: (1) intra-mantle differentiation processes that fractionate U(and Th) from Pb, but not 18O/16O ratios, or (2) a dominantly peridotitic source with HIMU-like trace-element and radiogenic isotope characteristics inherited from equilibration and remixing of ancient recycled oceanic lithosphere. In contrast, some HIMU ocean island basalts require mantle sources with low-δ18O, indicating that they originate from distinct recycled mantle lithologies (e.g., pyroxenite/eclogite).

Howarth, GH, Udry A, Day JMD.  2018.  Petrogenesis of basaltic shergottite Northwest Africa 8657: Implications for fO2 correlations and element redistribution during shock melting in shergottites. Meteoritics and Planetary Science. 53:249-267.   10.1111/maps.12999   AbstractWebsite

Northwest Africa (NWA) 8657 is an incompatible trace element-enriched, low-Al basaltic shergottite, similar in texture and chemistry to Shergotty, Zagami, and NWA 5298. It is composed of zoned pyroxene, maskelynite, merrillite, and Ti-oxide minerals with minor apatite, silica, and pyrrhotite. Pyroxene grains are characterized by patchy zoning, with pigeonite or augite cores zoned to Fe-rich pigeonite mantles. The cores have rounded morphologies and irregular margins. Combined with the low Ti/Al of the cores, the morphology and chemistry of the pyroxene grains are consistent with initial crystallization at depth (30–70 km) followed by partial resorption en route to the surface. Enriched rare earth element (REE) equilibrium melt compositions and calculated oxygen fugacities (fO2) conditions for pigeonite cores indicate that the original parent melts were enriched shergottite magmas that staged in chambers at depth within the Martian crust. NWA 8657 does not represent a liquid but rather entrained a proportion of pyroxene crystals from magma chambers where fractional crystallization was occurring at depth. Variation between fO2 and bulk-rock (La/Yb)N of the enriched and intermediate shergottites suggests that oxidation conditions and degree of incompatible element enrichment in the source may not be correlated, as thought previously. Shock melt pockets are characterized by an absence of phosphates and oxide minerals. It is likely that these phases were melted during shock. REEs were redistributed during this process into maskelynite and to a lesser extent the shock melt; however, the overall normalized REE profile of the shock melt is like that of the bulk-rock, but at lower absolute concentrations. Overall, shock melting has had a significant effect on the mineralogy of NWA 8657, especially the distribution of phosphates, which may be significant for geochronological applications of this meteorite and other Martian meteorites with extensive shock melt.