Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
Amsellam, E, Moynier F, Pringle EA, Bouvier A, Chen H, Day JMD.  2017.  Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes. Earth and Planetary Science Letters. 469:75-83.   10.1016/j.epsl.2017.04.022   Abstract

Understanding the composition of raw materials that formed the Earth is a crucial step towards
understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most
abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary
composition. However, in order to use Ca isotopes as a tracer of Earth’s accretion history, it is first
necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation.
Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic
composition enables understanding of how and in what conditions the Solar System formed. Here we
present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that
most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca
isotopes (δ44/40Ca= +0.1 to +0.93) compared with bulk silicate Earth (δ44/40Ca= +1.05 ± 0.04,
Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope
composition (δ44/40Ca = +0.91 to +1.06). Chondrules from Allende are enriched in the heavier
isotopes of Ca compared to the bulk and the matrix of the meteorite (δ44/40Ca = +1.00 to +1.21).
This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous
chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and
chondrules is permissive of recent dynamical models of planetary formation that propose a chondrulerich
accretion model for planetary embryos.

Truong, TB, Castillo PR, Hilton DR, Day JMD.  2018.  The trace element and Sr-Nd-Pb isotope geochemistry of Juan Fernandez lavas reveal variable contributions from a high-3He/4He mantle plume. Chemical Geology. 476:280-291.   10.1016/j.chemgeo.2017.11.024   Abstract

The Juan Fernandez Islands in the southeastern Pacific are an atypical linear volcanic chain that exhibits a considerable range in 3He/4He ratios (8 to 18 RA, where RA is the 3He/4He ratio of air), but limited ranges of 87Sr/86Sr and 143Nd/144Nd. Here we report new trace element abundance data and Sr-Nd-Pb isotope data for mafic lavas previously analyzed for their 3He/4He and He contents from the two main islands of Robinson Crusoe and Alexander Selkirk. Lavas from these islands have been previously grouped based on geochemical and petrological classification into Group I and III basalts, and Group II basanites. In general, samples have overlapping Sr-Nd-Pb isotope compositions that suggest a common, albeit slightly heterogeneous mantle source. In detail, the Group I and III tholeiitic and alkalic basalts have nearly identical incompatible trace element patterns, whereas the Group II basanites show elevated incompatible trace element abundances. Major and incompatible trace element modeling indicates that Group III basalts (3He/4He = 7.8–9.5 RA) from younger Alexander Selkirk Island were produced by the highest degree of partial melting (> 10%) of a common mantle source, followed by Group I basalts (13.6–18.0 RA) and Group II basanites (11.2–12.5 RA) from older Robinson Crusoe Island. The 206Pb/204Pb of Group I basalts and Group II basanites are slightly more radiogenic and limited in range (19.163 to 19.292) compared with those of Group III (18.939 to 19.221). The Group I and II lavas from Robinson Crusoe are consistent with an origin from the so-called focus zone (FOZO) mantle component, whereas the Alexander Selkirk basalts additionally contain contributions from a less-enriched or relatively depleted mantle component. Juan Fernandez lavas reveal limited ranges of Sr-Nd-Pb isotopes but variable 3He/4He as their parental magmas originated mainly from the FOZO component with high 3He/4He (> 9 RA) and variably polluted with a depleted component with lower 3He/4He (ca. 8 RA). Contributions from high-3He/4He mantle sources to ocean island basalts can therefore vary both spatially and temporally, over meter to kilometer lengths and hundred to million-year time scales, and may not be strongly correlated to radiogenic lithophile isotope systematics.

Mundl, A, Touboul M, Jackson MG, Day JMD, Kurz MD, Lekic V, Helz RT, Walker RJ.  2017.  Tungsten-182 heterogeneity in modern ocean island basalts. Science. 356(6333):66-69.   10.1126/science.aal4179   Abstract

New tungsten isotope data for modern ocean island basalts (OIB) from Hawaii, Samoa, and Iceland reveal variable 182W/184W, ranging from that of the ambient upper mantle to ratios as much as 18 parts per million lower. The tungsten isotopic data negatively correlate with 3He/4He. These data indicate that each OIB system accesses domains within Earth that formed within the first 60 million years of solar system history. Combined isotopic and chemical characteristics projected for these ancient domains indicate that they contain metal and are repositories of noble gases. We suggest that the most likely source candidates are mega–ultralow-velocity zones, which lie beneath Hawaii, Samoa, and Iceland but not beneath hot spots whose OIB yield normal 182W and homogeneously low 3He/4He.